Solutions to Sheet 1

Exercise 1

Determine the nilradical, the Jacobson radical and the units for each ring A below:

1. k a field and A = k[T],
2. k a field and A = ke, T]/(€2),

3. n>1,kafield and A = k[T1,...,T,].
Solution.

1. Nilradical. If B is any commutative ring without zero divisors, then B[T]| doesn’t have
zero divisors. Indeed, if f,g € B[T] with fg = 0, we can look at the leading terms of f
and g, obtaining f = 0 or ¢ = 0. We now obtain Nil(A) = (0) as every element in the
nilradical is a zero divisor.

Units. Obviously, k* C k[T]*. We have the additive degree map deg : k[T]* — Ny. If
we have elements f,g € k[T] with fg = 1, then 0 = deg(fg) = deg(f) + deg(g), thereby
deg(f) = deg(g) = 0 and f,g € k*. This shows that k* D k[T]*, and we have equality.

Jacobson radical. Note that if B is any commutative ring and f € Jac(B), then 1+ f € B*.
Indeed, if we had 1+ f ¢ B*, we’d find some maximal ideal m containing 1+ f (by Zorn’s
lemma). But now f € m (as f € Jac(B)) and 1+ f € m, hence 1 € m. This is a
contradiction. Thereby we obtain that every f € Jac(A) has degree 0, i.e., lies in k.
As A* N Jac(A) = 0, we find Jac(A) = 0. (As Jac(A) D Nil(A), this is stronger than
Nil(4) =0.)

2. Nilradical and Jacobson radical. We claim that if I C Nil(A), there is an equality
Nil(A)/I = Nil(A/I). Indeed, this can be seen directly by writing the nilradical as the

intersection of prime ideals. The same statement is true for the Jacobson radical.

We apply this statement with I = (¢). As €2 = 0, we have I C p for every prime ideal,
hence (g) C Jac(A). As A/(e) = k[T, we have (0) = Nil(A/(e)) = Nil(A)/(g). This shows
Nil(A) = (g).

The same proof, but with Jac in place of Nil (and maximal ideals instead of prime ideals)
shows that Jac(A4) = (e).

Units. There are probably smarter ways to do this, but let’s try brute force. Suppose
we have f = fi + efe and g = g1 + €92, where f;,g; € k[T], such that fg = 1. Now
1= fig1 +e(fig2 + fag1). It follows that fi € £, and we clam that this is also sufficient
for f € A*. Indeed, up to multiplication with a constant in k>, f is of the form 1+ ¢f5,
and now f admits an inverse f~! =1 —efs.

3. Units. We first claim that every f € A with non-zero constant term is invertible. Indeed,
after multiplying with a unit ¢ € £* we may assume that f = 1+ R with R € (T1,...,T,).
Now, f admits the inverse f~1 = ﬁ =Y 20— )" ek[T,...,Tn].

Jacobson radical. We first claim that A is a local ring, i.e., a ring with a unique maximal
ideal. Indeed, we have seen that every element not lying in the ideal m = (71,...,T},) is
invertible, hence m is an ideal that contains all other ideals.



Nil radical. We want to show that A is reduced. More generally, we prove the following
statement, from where the claim follows by induction.

If B is reduced, B[T] is reduced.

for the sake of contradiction, assume that f € B[T7] is a non-zero power series with f” = 0.
Write f = agT% + ag1 T4 + ... with ag # 0. Now f" = 0 implies a” = 0, so ag = 0 by
reducedness of B. Hence f = 0.

Exercise 2

Prove the Chinese remainder theorem: Let A be a ring and a,b C A two ideals such that
a+ b= A. Then the map

Alanb — AJax A/b, r4+anb— (r+a,r+b)

is an isomorphism. Moreover, show that aNb = a- b, where a - b is the smalles ideal in A
containing all products ab wth a € A, b € B. Show a Nb = ab. Show that map has kernel a N'b
and that homomorphism is surjective.

Solution. We first show that this map is well-defined, and indeed a homomorphism of rings.
This is evident for the reduction-mod-a and reduction-mod-b maps A — A/a and A/b. By the
universal property of the product of rings we obtain the map A — A/a x A/b. The kernel of
this homomorphism is given by the elements in A which lie simultaneously in a and b, hence
we obtain an injective map

A/(anb) — AJax A/b.
To show surjectivity, it suffices to construct elements a, b € A such that a — (0,1) and b — (1,0).
As a+ b = A, there are elements a € a and b € b such that a + b = 1. These are the elements

we are looking for! Indeed, as a = 1 — b we find that a reduces to 1 mod b, and as a € a we find
(a+a,a+0b)=(a,1+0b).

Remark. There is a more general version of the chinese remainder theorem which we will need
in exercise 4. Namely, if ai,...,qa, is a finite set of pairwise coprime ideals (meaning that for
any choice 1 <i < j <n we have a; + a; = A), there is an isomorphism

A/(agN--Nay) = A/ag x -+ x A/ay.

To see this, one can either generalize the proof given above, or use induction after showing that
the coprimality assumption implies that the ideals (a3 N---Na,—1) and a, are coprime.

We now show that aNb = a-b. The inclusion aNb D a- b is obvious, as all products ab lie in
both a and b. To show the reverse inclusion, let f € anNb. Again, let a +b =1 with a € a and
b€ b. Then fa+ fb= f, and the left hand side lies in a - b by definition.

Remark. Note that this statement is wrong if we drop the assumption that a4+ b = 1. Indeed,
take for example a = (4), b = (6) as ideals of Z. Then ab = (24), while an'b = (12). However,
the assumption that a + b = A is not necessary. In the case A = k[X,Y], a = (X) and b = (V)
we still have ab = (XY) = anb even though a+b = (X,Y) # A.

Exercise 3

Recall that an element e € A in a ring A is called idempotent if e? = e.



1. Let A be a ring. Show that the map e — (A4; = eA, Ay == (1 — e)A) induces a bijection
between the set Idem(A) of idempotents of A and the set of decompositions A = A; x As
of rings.

2. Let A =7Z/1337Z. Determine Idem(A).
Solution.

1. The exercise does not make clear what it means by a decomposition. In the scope of this
exercise, a decomposition of A is an isomorphism § : A — Ay X As, where A1 and A, are
any two rings. We say that two decompositions §; : A — Ay x Ao and 09 : A — By x By are
isomorphic iff there are isomorphisms ¢; : A; — B;, i = 1,2 such that (¢1,¢2) 0 1 = da.
We define the set D4 as the set of isomorphism classes of the set! of decompositions, and
we’ll show that the map specified in the exercise gives a bijection Idem(A) — D 4.

First, note that (1 —e)? = (1 — e) for any idempotent e.

We have show that the map really is a map! That is, we show that for any idempotent
element e € A, there is an isomorphism d, : A = eAx (1—e)A, where eA and (1—e)A carry
the ring structure of A, but with identity given by e and (1 — e), respectively. Surjectivity
is comes from the fact that (ea, (1 —e)b) has preimage (ea+ (1 —e)b), and injectivity boils
down to the calculation Ker(d.) = () N (1 —e) = (e) - (1 —e) = (0).

Next, note that we also have a map D4 — Idem(A) given by sending 6 : A — A; X As
to es == 67 1(1,0). This map does not depend on the isomorphism class of § as ring
homomorphisms preserve the multiplicative unit. One quickly verifies that Idem(A) —
Dy — Idem(A) is the identity. The last thing to see is that D4 — Idem(A) — Dy
is the identity as well, which is the same as showing that for a given decomposition
0 : A — Ay x Ay, there is an isomorphism J = d.,. Such an isomorphism is the same
as isomorphisms ¢1 : esA — Ay, w2 : (1 —es)A — Ay. As 0 sends the ideal () C A
to the ideal generated by (1,0) in A; X Asg, ¢ restricts to an isomorphism (of modules)
esA — Aj x {0}. This yields an isomorphism (of rings) ¢ : A — A;. Similarly for the
second coordinate. Now (1, p2) constitute an isomorphism § = ;.

2. Note that 133 = 19 x 7, hence by the chinese remainder theorem Z/133 = Z/19 x Z/7.
The right hand side is a product of fields, and it is clear that the only idempotents there
are given by (0,0),(1,0),(0,1),(1,1). As 1 =19-3 — 7 -8, the isomorphism from the
chinese remainder theorem is given by (a,b) — 57b+ 77a, and we find that the non-trivial
idempotents are given by 57 and 77.

Exercise 4

Let k be a field and let kK — A be a ring homomorphism such that A is finite dimensional over
k (i.e., regarded as a k-vector space, A has finite dimension).

1. Show that A is a field if A is an integral domain.

2. Deduce that each prime ideal in A is maximal.

! Actually I’m not sure if this really is a set, but whatever. The decompositions will certainly form a category
(a groupoid), with morphisms the isomorphisms we described. The isomorphism classes do form a set as they all
are represented by quotients of A.



3. Deduce that if A is reduced, then A is isomorphic to a finite product of finite field exten-
sions [/k.

Solution.

1. Let x € A be nonzero. Let ¢ : A — A be the map obtained by multiplication with z, i.e.,
¢(a) = xza. Now ¢ is a morphism of k-vector spaces (as ¢(Aa+b) = Ap(a)+¢(b) for A € k,
a,b € A.), and it is injective by the fact that A is an integral domain. Indeed, if za = 0,
we find @ = 0 as there are no zero divisors and x # 0. But now ¢ is an injective morphism
between k-vector spaces of the same dimension, hence an isomorphism. In particular, we
find some element ! € A such that 1 = (2~ !) = 2~ !. Hence every non-zero element
of A has an inverse, and A is a field.

2. Let p € A be a prime ideal. We apply what we showed in part 1) to A/p. As p is prime,
A/p is an integral domain. But also, the composition k& — A — A/p turns A/p into a
k-vector space with dimg(A/p) < dimg(A) (surjective maps between vector spaces reduce
dimension). In particular, A/p is finite-dimensional over k. Now part 1) gives that A/p
is a field, and as an ideal is maximal if and only it’s quotient ring is a field, we find that
p is maximal.

3. Let M be the set of maximal (or prime, they are the same by the above) ideals of A. We
want to apply the chinese remainder theorem, but a priori we can’t, because M might be
infinite. We claim however that in our situation, M is finite. To show this, suppose that
(my,mg,...) be an infinite sequence of elements in I. By the chinese remainder theorem,
there is for any N € N an isomorphism

A/(miN---Nmy) = A/my X --- X A/mp.

The left-hand side has dimension < dimg(A), as it is a quotient of A. Meanwhile, the
right-hand side has dimension > N, as every quotient A/m; is a non-trivial k-vector
space and thereby has dimension at least 1. If we choose N > dimg(A), we arrive at
a contradiction. Now M = {my,...,m,} is finite, and applying the chinese remainder
theorem again yields the desired decomposition. All factors are field extensions of k of
degree < dimg(A), in particular finite.
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