
Solutions to Sheet 1

Exercise 1

Determine the nilradical, the Jacobson radical and the units for each ring A below:

1. k a field and A = k[T ],

2. k a field and A = k[ϵ, T ]/(ϵ2),

3. n ≥ 1, k a field and A = kJT1, . . . , TnK.

Solution.

1. Nilradical. If B is any commutative ring without zero divisors, then B[T ] doesn’t have
zero divisors. Indeed, if f, g ∈ B[T ] with fg = 0, we can look at the leading terms of f
and g, obtaining f = 0 or g = 0. We now obtain Nil(A) = (0) as every element in the
nilradical is a zero divisor.
Units. Obviously, k× ⊂ k[T ]×. We have the additive degree map deg : k[T ]× → N0. If
we have elements f, g ∈ k[T ] with fg = 1, then 0 = deg(fg) = deg(f) + deg(g), thereby
deg(f) = deg(g) = 0 and f, g ∈ k×. This shows that k× ⊃ k[T ]×, and we have equality.
Jacobson radical. Note that if B is any commutative ring and f ∈ Jac(B), then 1+f ∈ B×.
Indeed, if we had 1+f ̸∈ B×, we’d find some maximal ideal m containing 1+f (by Zorn’s
lemma). But now f ∈ m (as f ∈ Jac(B)) and 1 + f ∈ m, hence 1 ∈ m. This is a
contradiction. Thereby we obtain that every f ∈ Jac(A) has degree 0, i.e., lies in k.
As A× ∩ Jac(A) = ∅, we find Jac(A) = 0. (As Jac(A) ⊃ Nil(A), this is stronger than
Nil(A) = 0.)

2. Nilradical and Jacobson radical. We claim that if I ⊂ Nil(A), there is an equality
Nil(A)/I = Nil(A/I). Indeed, this can be seen directly by writing the nilradical as the
intersection of prime ideals. The same statement is true for the Jacobson radical.
We apply this statement with I = (ε). As ε2 = 0, we have I ⊂ p for every prime ideal,
hence (ε) ⊂ Jac(A). As A/(ε) ∼= k[T ], we have (0) = Nil(A/(ε)) = Nil(A)/(ε). This shows
Nil(A) = (ε).
The same proof, but with Jac in place of Nil (and maximal ideals instead of prime ideals)
shows that Jac(A) = (ε).
Units. There are probably smarter ways to do this, but let’s try brute force. Suppose
we have f = f1 + εf2 and g = g1 + εg2, where fi, gi ∈ k[T ], such that fg = 1. Now
1 = f1g1 + ε(f1g2 + f2g1). It follows that f1 ∈ k×, and we clam that this is also sufficient
for f ∈ A×. Indeed, up to multiplication with a constant in k×, f is of the form 1 + εf2,
and now f admits an inverse f−1 = 1 − εf2.

3. Units. We first claim that every f ∈ A with non-zero constant term is invertible. Indeed,
after multiplying with a unit c ∈ k× we may assume that f = 1+R with R ∈ (T1, . . . , Tn).
Now, f admits the inverse f−1 = 1

1−(1−f) =
∑∞

n=0(1 − f)n ∈ kJT1, . . . , TnK.

Jacobson radical. We first claim that A is a local ring, i.e., a ring with a unique maximal
ideal. Indeed, we have seen that every element not lying in the ideal m = (T1, . . . , Tn) is
invertible, hence m is an ideal that contains all other ideals.
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Nil radical. We want to show that A is reduced. More generally, we prove the following
statement, from where the claim follows by induction.

If B is reduced, BJT K is reduced.

for the sake of contradiction, assume that f ∈ BJT K is a non-zero power series with fn = 0.
Write f = adT d + ad+1T d+1 + . . . with ad ̸= 0. Now fn = 0 implies an

d = 0, so ad = 0 by
reducedness of B. Hence f = 0.

Exercise 2

Prove the Chinese remainder theorem: Let A be a ring and a, b ⊂ A two ideals such that
a + b = A. Then the map

A/a ∩ b → A/a × A/b, r + a ∩ b 7→ (r + a, r + b)

is an isomorphism. Moreover, show that a ∩ b = a · b, where a · b is the smalles ideal in A
containing all products ab wth a ∈ A, b ∈ B. Show a ∩ b = ab. Show that map has kernel a ∩ b
and that homomorphism is surjective.

Solution. We first show that this map is well-defined, and indeed a homomorphism of rings.
This is evident for the reduction-mod-a and reduction-mod-b maps A → A/a and A/b. By the
universal property of the product of rings we obtain the map A → A/a × A/b. The kernel of
this homomorphism is given by the elements in A which lie simultaneously in a and b, hence
we obtain an injective map

A/(a ∩ b) → A/a × A/b.

To show surjectivity, it suffices to construct elements a, b ∈ A such that a 7→ (0, 1) and b 7→ (1, 0).
As a + b = A, there are elements a ∈ a and b ∈ b such that a + b = 1. These are the elements
we are looking for! Indeed, as a = 1 − b we find that a reduces to 1 mod b, and as a ∈ a we find
(a + a, a + b) = (a, 1 + b).

Remark. There is a more general version of the chinese remainder theorem which we will need
in exercise 4. Namely, if a1, . . . , an is a finite set of pairwise coprime ideals (meaning that for
any choice 1 ≤ i < j ≤ n we have ai + aj = A), there is an isomorphism

A/(a1 ∩ · · · ∩ an) ∼= A/a1 × · · · × A/an.

To see this, one can either generalize the proof given above, or use induction after showing that
the coprimality assumption implies that the ideals (a1 ∩ · · · ∩ an−1) and an are coprime.

We now show that a ∩ b = a · b. The inclusion a ∩ b ⊃ a · b is obvious, as all products ab lie in
both a and b. To show the reverse inclusion, let f ∈ a ∩ b. Again, let a + b = 1 with a ∈ a and
b ∈ b. Then fa + fb = f , and the left hand side lies in a · b by definition.

Remark. Note that this statement is wrong if we drop the assumption that a+ b = 1. Indeed,
take for example a = (4), b = (6) as ideals of Z. Then ab = (24), while a ∩ b = (12). However,
the assumption that a + b = A is not necessary. In the case A = k[X, Y ], a = (X) and b = (Y )
we still have ab = (XY ) = a ∩ b even though a + b = (X, Y ) ̸= A.

Exercise 3

Recall that an element e ∈ A in a ring A is called idempotent if e2 = e.
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1. Let A be a ring. Show that the map e 7→ (A1 := eA, A2 := (1 − e)A) induces a bijection
between the set Idem(A) of idempotents of A and the set of decompositions A = A1 × A2
of rings.

2. Let A = Z/133Z. Determine Idem(A).

Solution.

1. The exercise does not make clear what it means by a decomposition. In the scope of this
exercise, a decomposition of A is an isomorphism δ : A → A1 × A2, where A1 and A2 are
any two rings. We say that two decompositions δ1 : A → A1×A2 and δ2 : A → B1×B2 are
isomorphic iff there are isomorphisms φi : Ai → Bi, i = 1, 2 such that (φ1, φ2) ◦ δ1 = δ2.
We define the set DA as the set of isomorphism classes of the set1 of decompositions, and
we’ll show that the map specified in the exercise gives a bijection Idem(A) → DA.
First, note that (1 − e)2 = (1 − e) for any idempotent e.
We have show that the map really is a map! That is, we show that for any idempotent
element e ∈ A, there is an isomorphism δe : A ∼= eA×(1−e)A, where eA and (1−e)A carry
the ring structure of A, but with identity given by e and (1 − e), respectively. Surjectivity
is comes from the fact that (ea, (1−e)b) has preimage (ea+(1−e)b), and injectivity boils
down to the calculation Ker(δe) = (e) ∩ (1 − e) = (e) · (1 − e) = (0).
Next, note that we also have a map DA → Idem(A) given by sending δ : A → A1 × A2
to eδ := δ−1(1, 0). This map does not depend on the isomorphism class of δ as ring
homomorphisms preserve the multiplicative unit. One quickly verifies that Idem(A) →
DA → Idem(A) is the identity. The last thing to see is that DA → Idem(A) → DA

is the identity as well, which is the same as showing that for a given decomposition
δ : A → A1 × A2, there is an isomorphism δ ∼= δeδ

. Such an isomorphism is the same
as isomorphisms φ1 : eδA → A1, φ2 : (1 − eδ)A → A2. As δ sends the ideal (e) ⊂ A
to the ideal generated by (1, 0) in A1 × A2, δ restricts to an isomorphism (of modules)
eδA → A1 × {0}. This yields an isomorphism (of rings) φ1 : eδA → A1. Similarly for the
second coordinate. Now (φ1, φ2) constitute an isomorphism δ ∼= δeδ

.

2. Note that 133 = 19 × 7, hence by the chinese remainder theorem Z/133 ∼= Z/19 × Z/7.
The right hand side is a product of fields, and it is clear that the only idempotents there
are given by (0, 0), (1, 0), (0, 1), (1, 1). As 1 = 19 · 3 − 7 · 8, the isomorphism from the
chinese remainder theorem is given by (a, b) 7→ 57b + 77a, and we find that the non-trivial
idempotents are given by 57 and 77.

Exercise 4

Let k be a field and let k → A be a ring homomorphism such that A is finite dimensional over
k (i.e., regarded as a k-vector space, A has finite dimension).

1. Show that A is a field if A is an integral domain.

2. Deduce that each prime ideal in A is maximal.
1Actually I’m not sure if this really is a set, but whatever. The decompositions will certainly form a category

(a groupoid), with morphisms the isomorphisms we described. The isomorphism classes do form a set as they all
are represented by quotients of A.
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3. Deduce that if A is reduced, then A is isomorphic to a finite product of finite field exten-
sions l/k.

Solution.

1. Let x ∈ A be nonzero. Let φ : A → A be the map obtained by multiplication with x, i.e.,
φ(a) = xa. Now φ is a morphism of k-vector spaces (as φ(λa+b) = λφ(a)+φ(b) for λ ∈ k,
a, b ∈ A.), and it is injective by the fact that A is an integral domain. Indeed, if xa = 0,
we find a = 0 as there are no zero divisors and x ̸= 0. But now φ is an injective morphism
between k-vector spaces of the same dimension, hence an isomorphism. In particular, we
find some element x−1 ∈ A such that 1 = φ(x−1) = xx−1. Hence every non-zero element
of A has an inverse, and A is a field.

2. Let p ∈ A be a prime ideal. We apply what we showed in part 1) to A/p. As p is prime,
A/p is an integral domain. But also, the composition k → A → A/p turns A/p into a
k-vector space with dimk(A/p) ≤ dimk(A) (surjective maps between vector spaces reduce
dimension). In particular, A/p is finite-dimensional over k. Now part 1) gives that A/p
is a field, and as an ideal is maximal if and only it’s quotient ring is a field, we find that
p is maximal.

3. Let M be the set of maximal (or prime, they are the same by the above) ideals of A. We
want to apply the chinese remainder theorem, but a priori we can’t, because M might be
infinite. We claim however that in our situation, M is finite. To show this, suppose that
(m1,m2, . . . ) be an infinite sequence of elements in I. By the chinese remainder theorem,
there is for any N ∈ N an isomorphism

A/(m1 ∩ · · · ∩ mN ) ∼= A/m1 × · · · × A/mN .

The left-hand side has dimension ≤ dimk(A), as it is a quotient of A. Meanwhile, the
right-hand side has dimension ≥ N , as every quotient A/mi is a non-trivial k-vector
space and thereby has dimension at least 1. If we choose N > dimk(A), we arrive at
a contradiction. Now M = {m1, . . . ,mn} is finite, and applying the chinese remainder
theorem again yields the desired decomposition. All factors are field extensions of k of
degree ≤ dimk(A), in particular finite.
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