
Solutions to Sheet 2

Exercise 1

Define ζ = −1+
√

−3
2 ∈ C.

1. Show that ζ is a primitive third root of unity.

2. Show that the norm (for the field extension Q(ζ)/Q of an element x + yζ ∈ Q(ζ), where
x, y ∈ Q, is given by x2 − xy + y2, and that this is non-negative for all x, y ∈ Q.

3. Following the discussion of Z[i] from the lecture, show that a prime p ̸= 3 is of the form
p = x2 − xy + y2 for some x, y ∈ Z if and only if p ≡ 1 (mod 3).

Solution.

1. We have
ζ3 =

(1
2(−1 +

√
−3)

)3
= 1/8(−1 + 3

√
−3 − 9 + 3

√
−3) = 1.

As ζ ̸= 1 (and 3 has no non-trivial divisors), it is a primitive (third) root.

2. The norm is defined as the product of all galois-conjugates. The minimal polynomial of
ζ is given by f(x) = x2 + x + 1 = (x − ζ)(x − ζ), so the only non-trivial element in the
Galois-group Gal(Q(ζ)/Q) is given by the action defined via ζ 7→ ζ, which is the same as
complex conjugation. We find

N(x + ζy) = (x + ζy)(x + ζy) = x2 + (ζ + ζ)xy + ζζy2.

The claim follows as ζ + ζ = −1 and ζζ = 1.
It remains to show that the norm is always positive. The claim is trivial if x, y have
different sign. If the sign is the same, we may wlog assume that both are positive. In
that case, this is a special case of the AM-GM inequality. But for completeness, here is a
calculation:

x2 − xy + y2 ≥ x2 − 2xy + y2 = (x − y)2 ≥ 0

3. We want to show that there is an element z = x + ζy ∈ Z(ζ) with N(z) = p if and only if
3 | p − 1. We know from the lecture that Z[ζ] is a principal ideal domain. First note that
the "only if" part is trivial. Indeed, we have

x2 − xy + y2 ≡
{

1 (mod 3), if (x, y) = (1, 1), (0, 1), (1, 0)
0 (mod 3), if (x, y) = (0, 0).

If 3 | x and 3 | y we find that 3 | N(x + ζy), hence N(x + ζy) cannot be a prime. This
shows that all primes of the form x2 − xy + y2 have residue 1 mod 3.
To show the converse implication, let p ∈ Z be any prime. As Z[ζ] is a PID, the prime
elements π ∈ Z[ζ] that divide p are in bijection with the maximal (equivalently, non-zero
prime) ideals m ⊂ Z[ζ] such that m ∩ Z = (p). An easy computation shows (lecture 3)
that these ideals are in bijection with the irreducible monic factors of T 2 + T + 1 in Fp[T ].
As Fp[T ] has a non-trivial third root of unity if and only if 3 | p − 1, we find that there
are two prime ideals "above" (p) if 3 | p − 1.
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Hence, let π1, π2 be the two prime elements of Z[ζ] that divide p and write (p) = (πe1
1 )(πe2

2 ).
As in the lecture we find N(π1) = N(π2) = p, which implies e1 = e2 = 1. Now we have
a primary decomposition p = π1π2, which implies that π1 = π2, which gives the desired
representation of p.

Exercise 2

1. Let A be a principal ideal domain that is not a field, and let m ⊂ A be a maximal ideal.
Prove that mn/mn+1 is a one-dimensional vector space over A/m for any n ≥ 0.

2. Let A = C[x, y] and m = (x, y). Compute dimA/m(mn/mn+1) for n ≥ 0. Deduce that A is
not a principal ideal domain.

3. Let A = Z[
√

−3]. Show that A has a unique maximal ideal m with m∩Z = (2). Compute
dimA/mm/m2. Deduce that A is not a principal ideal domain.

Solution.

1. Let π ∈ A such that (π) = m. We have the map (of A-modules)

φ : A → mn/mn+1, a 7→ aπn.

It is obviously surjective, and one quickly verifies that the kernel is given by (π). Hence
we find A/m ∼= mn/mn+1, and we are done.

2. We have mn = (xn, xn−1y, . . . , xyn−1, yn). These generators form a basis for mn/mn+1

(they are generating and linearly independent over C), hence the dimension is n + 1. This
contradicts what we showd for principal ideal domains once n ≥ 1.

3. We first show that there is a unique maximal ideal of A with Z ∩ m = (2). Indeed, those
maximal ideals are in bijection with the maximal ideals of F2[T ]/(T 2 + 3). As T 2 + 3
factors in F2[T ] as (T + 1)2, we find that m = (2,

√
−3 + 1) is the unique maximal ideal

of Z[
√

−3] above (2).
Now m2 = (4, 2

√
−3 + 2, −2 + 2

√
−3). Hence the elements 2 and

√
−3 + 1 do not lie in m2

as they have norm 4 (after choosing an embedding into C), while all elements generating
m2 have norm 16. Hence there are at least 3 elements in m/m2, thereby dimF2 m/m2 ̸= 1.

Exercise 3

Let A be a unique factorization domain.

1. Show that for any prime element π ∈ A, the ideal p = (π) is prime and only contains the
prime ideals {0} and p.

2. Conversely, let 0 ̸= p ⊂ A be a prime ideal such that {0} and p are the only prime ideals
of A that are contained in p. Show that p = (π) for some prime element π ∈ A.

3. Assume that each non-zero prime ideal p ⊂ A satisfies the assumption in 2). Show that
A is a principal ideal domain.
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Solution.

1. Let 0 ̸= q be a prime contained in p. Take some nonzero element q ∈ q. Write q = aπn,
where a ∈ A is an element not divisible by π. Now, as q is prime, either πn ∈ q or a ∈ q.
But we have a ̸∈ (π) ⊂ q, hence πn ∈ q. Induction shows that π ∈ q, which results in
q = p.

2. Suppose π ∈ p is a prime element contained in p. Then (π) ⊂ p, which by assumption
shows (π) = p. We only need to show that there are prime ideals in any nonzero element
p. For that sake, let a ∈ p. There is a finite decomposition a =

∏n
i=1 pei

i , and we find that
for some i, the prime element pi lies in p.

3. Let I ̸= (0) be any ideal. Let π1, . . . , πn be the finite set of primes such that I ⊂ (πi) (this
is a finite set because any f ∈ I has only a finite number of divisors), and let ei be the
maximal integer such that I ⊂ (πei

i ) holds. Write α = πe1
1 . . . πen

n . We claim that I = (α).
The inclusion "I ⊂ (α)" is trivial.
To show the other direction, it suffices to show that α ∈ I. Suppose that I = (gi | i ∈ I).
Write gi = hiα and inspect the ideal I ′ = (hi | i ∈ I). By construction there is no prime
π ∈ A such that I ′ ⊂ (π), otherwise the factors ei would not have been chosen maximal.
But this shows that I ′ = (1), i.e., α ∈ I.

Exercise 4

1. Let A be any ring. Show that A contains minimal prime ideals.

2. Determine the minimal prime ideals of Z[x, y]/(xy).

Solution.

1. What does Zorn’s Lemma say again? Ah. If in an ordered set we can show that any
totally ordered chain has a minimal element, then there are minimal elements. As our
ordered set we take the set of prime ideals, ordered by inclusion. To apply Zorn’s lemma,
let p1 ⊃ p2 ⊃ . . . be a decreasing chain of prime ideals. We need to show that this chain
has a minimal element, which is a prime ideal p such that pi ⊃ p. We set p =

⋂
i∈N pi, and

we have to show that this is a prime ideal. This is straight-forward. Assume that ab ∈ p.
Assume b ̸∈ p. Then, there is some i such that b ̸∈ pi, and hence b ̸∈ pj for all j ≥ i. But
now, as all of the pi are prime, we find that a ∈ pi for all i. Hence a ∈ p, and we are done.

2. We use that minimal prime ideals of Z[x, y]/(xy) are exactly those prime ideals of Z[x, y]
that are minimal among those containing (xy). Using that Z[x, y] is a UFD, we find that
those prime ideals are given by (x) and (y).
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