Solutions to Sheet 2

Exercise 1
Define ¢ = 71%\/773 e C.

1. Show that ( is a primitive third root of unity.

2. Show that the norm (for the field extension Q(¢)/Q of an element = + y¢ € Q(¢), where
x,y € Q, is given by 22 — zy + y?, and that this is non-negative for all z,y € Q.

3. Following the discussion of Z[i] from the lecture, show that a prime p # 3 is of the form
p =2 — xy + 3> for some z,y € Z if and only if p =1 (mod 3).

Solution.

1. We have

¢ = (501 +¢?3>)3 = 1/8(-1+43V-3-9+3/-3) = 1.

As ( # 1 (and 3 has no non-trivial divisors), it is a primitive (third) root.

2. The norm is defined as the product of all galois-conjugates. The minimal polynomial of
¢ is given by f(z) = 2>+ 2+ 1 = (z — {)(x — (), so the only non-trivial element in the
Galois-group Gal(Q(¢)/Q) is given by the action defined via ¢ + ¢, which is the same as
complex conjugation. We find

N(z + Cy) = (z + Cy)(z + (y) = 2% + (¢ + Qzy + (Cy°.

The claim follows as ( +( = —1 and ¢ = 1.

It remains to show that the norm is always positive. The claim is trivial if x,y have
different sign. If the sign is the same, we may wlog assume that both are positive. In
that case, this is a special case of the AM-GM inequality. But for completeness, here is a
calculation:

2 —wy+yt >’ =2y +yt = (z—y)’ >0

3. We want to show that there is an element z = = + (y € Z(({) with N(z) = p if and only if
3| p—1. We know from the lecture that Z[(] is a principal ideal domain. First note that
the "only if" part is trivial. Indeed, we have

1 d3), if(z,y)=1(1,1),(0,1),(1,0
22 —ay+? = (mod 3) 1(959) (1,1),(0,1),(1,0)

0 (mod 3), if (x,y)=(0,0).
If 3|z and 3|y we find that 3 | N(z 4+ Cy), hence N(z + (y) cannot be a prime. This
shows that all primes of the form 2% — zy + y? have residue 1 mod 3.

To show the converse implication, let p € Z be any prime. As Z[(] is a PID, the prime
elements 7 € Z[(] that divide p are in bijection with the maximal (equivalently, non-zero
prime) ideals m C Z[(] such that m N Z = (p). An easy computation shows (lecture 3)
that these ideals are in bijection with the irreducible monic factors of 7% + T + 1 in F,[T].
As Fp[T] has a non-trivial third root of unity if and only if 3 | p — 1, we find that there
are two prime ideals "above" (p) if 3 | p — 1.



Hence, let 71, w2 be the two prime elements of Z[(] that divide p and write (p) = (7]*)(75?).
As in the lecture we find N(71) = N(my) = p, which implies e; = es = 1. Now we have
a primary decomposition p = w79, which implies that m; = 7o, which gives the desired
representation of p.

Exercise 2

1. Let A be a principal ideal domain that is not a field, and let m C A be a maximal ideal.
Prove that m”/m"*! is a one-dimensional vector space over A/m for any n > 0.

2. Let A=Clz,y] and m = (z,y). Compute dim 4 /y(m™/m"*1) for n > 0. Deduce that A is
not a principal ideal domain.

3. Let A = Z[v/—3]. Show that A has a unique maximal ideal m with mNZ = (2). Compute
dim 4 /m m/m2. Deduce that A is not a principal ideal domain.

Solution.

1. Let m € A such that (7) = m. We have the map (of A-modules)
0: A—=m"/m" 4 an™

It is obviously surjective, and one quickly verifies that the kernel is given by (7). Hence
we find A/m = m”/m""! and we are done.

2. We have m" = (2", 2" ly,...,2y" 1 y"). These generators form a basis for m"/m"*+!
(they are generating and linearly independent over C), hence the dimension is n+ 1. This
contradicts what we showd for principal ideal domains once n > 1.

3. We first show that there is a unique maximal ideal of A with Z Nm = (2). Indeed, those
maximal ideals are in bijection with the maximal ideals of Fo[T]/(T? + 3). As T? + 3
factors in Fo[T] as (T + 1)%, we find that m = (2,1/—3 + 1) is the unique maximal ideal
of Z[\/—3] above (2).

Now m? = (4,2y/=3+2,—2+2y/=3). Hence the elements 2 and /=3 + 1 do not lie in m?

as they have norm 4 (after choosing an embedding into C), while all elements generating
m? have norm 16. Hence there are at least 3 elements in m/m?2, thereby dimp, m/m? # 1.

Exercise 3

Let A be a unique factorization domain.

1. Show that for any prime element 7 € A, the ideal p = () is prime and only contains the
prime ideals {0} and p.

2. Conversely, let 0 # p C A be a prime ideal such that {0} and p are the only prime ideals
of A that are contained in p. Show that p = (7) for some prime element 7 € A.

3. Assume that each non-zero prime ideal p C A satisfies the assumption in 2). Show that
A is a principal ideal domain.



Solution.

1. Let 0 # g be a prime contained in p. Take some nonzero element g € q. Write ¢ = an™,
where a € A is an element not divisible by w. Now, as q is prime, either 7™ € q or a € q.
But we have a ¢ (7) C q, hence 7" € q. Induction shows that 7 € q, which results in

q=>p.

2. Suppose 7 € p is a prime element contained in p. Then (7) C p, which by assumption
shows (7) = p. We only need to show that there are prime ideals in any nonzero element
p. For that sake, let @ € p. There is a finite decomposition a = [T}, p;*, and we find that
for some i, the prime element p; lies in p.

3. Let I # (0) be any ideal. Let 71, ..., m, be the finite set of primes such that I C (m;) (this
is a finite set because any f € I has only a finite number of divisors), and let e; be the
maximal integer such that I C (w;") holds. Write a = 7{* ... w&». We claim that I = ().
The inclusion "I C («)" is trivial.

To show the other direction, it suffices to show that o € I. Suppose that I = (g; | i € I).
Write g; = h;a and inspect the ideal I’ = (h; | i € I). By construction there is no prime
7 € A such that I’ C (), otherwise the factors e; would not have been chosen maximal.
But this shows that I’ = (1), i.e., a € I.

Exercise 4

1. Let A be any ring. Show that A contains minimal prime ideals.

2. Determine the minimal prime ideals of Z[z, y]/(zy).

Solution.

1. What does Zorn’s Lemma say again? Ah. If in an ordered set we can show that any
totally ordered chain has a minimal element, then there are minimal elements. As our
ordered set we take the set of prime ideals, ordered by inclusion. To apply Zorn’s lemma,
let p1 D p2 D ... be a decreasing chain of prime ideals. We need to show that this chain
has a minimal element, which is a prime ideal p such that p; O p. We set p = (;cy i, and
we have to show that this is a prime ideal. This is straight-forward. Assume that ab € p.
Assume b & p. Then, there is some 7 such that b & p;, and hence b ¢ p; for all j > i. But
now, as all of the p; are prime, we find that a € p; for all i. Hence a € p, and we are done.

2. We use that minimal prime ideals of Z[z, y]/(zy) are exactly those prime ideals of Z[z, y]
that are minimal among those containing (xy). Using that Z[z,y| is a UFD, we find that
those prime ideals are given by (z) and (y).
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