
Solutions to Sheet 4

Exercise 1

Let A be a ring.

1. Assume that fn ∈ AJT K, n ≥ 0, is a sequence of elements such that fn ∈ (T )n for all
n ≥ 0. Show that there exists a unique element f ∈ AJT K such that f −

∑n
k=0 fk ∈ (T )n+1

for all n ≥ 0.

2. Assume that A is noetherian. Show that AJT K is noetherian.

Solution.

1. We can just write down f . We need to find coefficients an such that f =
∑∞

n=0 anT n

satisfies f −
∑

fk ∈ (T )n+1. Write fk =
∑k

j=0 akjT j + (T )k. One quickly verifies that
an =

∑n
k=0 akn does the job.

2. Similar to the proof that the polynomial ring over a noetherian ring is noetherian, we
let I ⊂ AJT K denote any ideal and denote by I ′ the ideal of A generated by the leading
coefficients of functions in f , namely I ′ := (ad | f = adT d +ad+1T d+1 + · · · ∈ AJT K). As A
is noetherian, there is a finite number of elements f1, . . . , fn such that the leading (non-
zero) coefficients of fi gerate I ′. Upon multiplying with powerst of T , we may assume
that all fi are of the form fi = aidT d + . . . with aid ̸= 0 for some some suitable d.
Now we claim that any g ∈ I ∩ T d also lies in (f1, . . . , fn). Indeed, writing g = bdT d +
bd+1T d+1 + . . . , we find that bd ∈ I ′, so we can eliminate the term bdT d from g without
leaving I ∩ T d. But now g′ = g − bdT d ∈ I ∩ (T d+1). Upon repeatedly eliminating leading
coefficients, we find g ∈ (f1, . . . , fn).
To finish the argument, note that AJT K/(T d) ∼= A[T ]/(T d) is noetherian. Hence the image
of I in this quotient is finitely generated, by (g1, . . . , gm), say. Choose lifts (g̃1, . . . , g̃m).
Now, by construction, I = (g1, . . . , gm, f1, . . . , fn).

Exercise 2

1. Let A be the ring of power series in CJzK with a positive radius of convergence. Show that
A is noetherian.

2. Show that the ring of holomorphic functions is not noetherian.

Solution.

1. One can quickly verify that all ideals of A are of the form (zd). Indeed, every function
that does not vanish at 0 does not have a root in some neighbourhood of 0 (by the identity
theorem), hence admits a holomorphic inverse there. This shows that the units in A are
given by A \ (z). Now any non-unit is of the form zdu with u invertible and d ≥ 1. The
claim follows.
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2. The hint commanded us to make use of the equation sin(2x) = 2 sin cos(x). This shows
that there is an infinite descending chain of ideals (sin(x)) ⊂ (sin(x/2)) ⊂ (sin(x/4)) ⊂ . . . .
It is clear that this chain does not get stationary, by looking at the real roots of those
functions.

Exercise 3

Let n ≥ 1. For an n × n matrix M over some ring A denote by χM (T ) = det(T · Id −M) its
characteristic polynomial.

1. Let A = Z[aij | 1 ≤ i, j ≤ n] and M := (aij)ij ∈ Matn(A). Show that χM (M) = 0.

2. Deduce a general form of the theorem of Cayley-Hamilton: Let A be a ring and let M be
any n × n matrix over A. Then χM (M) = 0.

Solution.

1. Since A is integral, we can pass to the field of fractions of A. Now the regular cayley
hamilton applies. (Note that the calculation of the determinant does not depend on
whether we are in the field of fractions or not).

2. There is a surjective map π : Z[a ∈ A] → A given by a 7→ a. By part 1 we find that
χM (M) = 0 in Z[a ∈ A]. Now 0 = π(χM (M)) = χM (M). Done?

Exercise 4

Let A be a principal ideal theorem.

1. Let a ∈ A \ {0} and let π ∈ A be prime. Set B := A/(a). For any n ≥ 0 show that

dimA/(π) πnB/πn+1B =
{

0, if νπ(a) ≤ n

1, if νπ(a) ≥ n + 1.

2. Assume that M = Ar ⊕ A/(a1) ⊕ · · · ⊕ A/(ak), N = As ⊕ A/(b1) ⊕ · · · ⊕ A/(bl) with
ai, bi ∈ A non zero and a1 | a2 | · · · | ak, b1 | · · · | bl. Show that if M ∼= N , then r = s,
k = l and (ai) = (bi) for all i.

Solution.

1. First, note that there are isomorphism (of A/(π) vector spaces)

πnB/πn+1B ∼= πn (A/(a)) /πn+1 (A/(a)) ∼= πnA/((πn+1, a) ∩ (πn)).

We have seen before that for principal ideal domains, we have dimA/(π)(πnA)/(πn+1A) =
1. The right hand side of the equation above is the same as πnA/πn+1A if a ∈ (πn+1),
otherwise we quotient out by some non-zero subspace. Hence we see that the quotient
above vanishes if and only if a ̸∈ πn+1, that is, if and only if νπ(a) ≥ n + 1.
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2. The exercise is confusing, because depending on how one thinks about modules over rings
(especially if one thinks of them as generalized vector spaces) it might seem tautological.
The main problem is that plain isomorphisms don’t necessarily respect direct sums. Over
non-commutative rings, there even are examples of modules S for which S ⊕ S ∼= S! Over
PIDs however, everything seems to be well-behaved. We solve the exercise in two steps.
Step 1: r = s. Let K = Frac(A) denote the field of fractions of A. Then upon tensoring
with K, the torsion part of M and N vanishes. Now by M ∼= N , we find Kr ∼= K ⊗ M ∼=
K ⊗ N ∼= Ks. As every basis of a finite dimensional vector space has the same number of
elements, this shows r = s. Appearently you have also already seen this in the lecture.
Step 2: The torsion part. We fix some prime element π ∈ A and use part 1 of the exercise.
The isomorphism M ∼= N yields an isomorphism πnM/πn+1M ∼= πnN/πn+1N . Choosing
n = νπ(ak), this shows that the π-adic valuations of ak and bl agree. Moreover, the
number

dn = dimA/(π) πnM/πn+1M = dimA/(π) πnN/πn+1N

is the number of elements among the ai such that νπ(ai) = n. Iterating over all prime
numbers π, this shows that
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