Solutions to Sheet 4

Exercise 1

Let A be a ring.

1. Assume that f, € A[T], n > 0, is a sequence of elements such that f, € (T)" for all
n > 0. Show that there exists a unique element f € A[T] such that f—>"7_, fx € (T)"*!
for all n > 0.

2. Assume that A is noetherian. Show that A[T] is noetherian.
Solution.

1. We can just write down f. We need to find coefficients a,, such that f = > 72, a,T"
satisfies f — 3 fr € (T)"1. Write fp = Z?:o ar;T9 + (T)F. One quickly verifies that
ap = Y _p—o Okn does the job.

2. Similar to the proof that the polynomial ring over a noetherian ring is noetherian, we
let I C A[T] denote any ideal and denote by I’ the ideal of A generated by the leading
coefficients of functions in f, namely I’ := (aq | f = agT?+ag 1T +--- € A[T]). As A
is noetherian, there is a finite number of elements fi, ..., f, such that the leading (non-
zero) coefficients of f; gerate I'. Upon multiplying with powerst of T, we may assume
that all f; are of the form f; = a;qT% + ... with a;q # 0 for some some suitable d.

Now we claim that any g € I NT? also lies in (f1,..., fn). Indeed, writing g = bgT¢ +
bar1 T + ..., we find that by € I’, so we can eliminate the term bgT? from g without
leaving I NT%. But now ¢’ = g — byT? € IN(T%1). Upon repeatedly eliminating leading
coefficients, we find g € (f1,..., fn).

To finish the argument, note that A[T]/(T%) = A[T]/(T?) is noetherian. Hence the image

of I in this quotient is finitely generated, by (g1,...,9m), say. Choose lifts (g1, ..., Gm)-
Now, by construction, I = (g1,.--,Gm, f1s---s fn)-

Exercise 2

1. Let A be the ring of power series in C[[z] with a positive radius of convergence. Show that
A is noetherian.

2. Show that the ring of holomorphic functions is not noetherian.

Solution.

1. One can quickly verify that all ideals of A are of the form (2¢). Indeed, every function
that does not vanish at 0 does not have a root in some neighbourhood of 0 (by the identity
theorem), hence admits a holomorphic inverse there. This shows that the units in A are
given by A\ (z). Now any non-unit is of the form z%u with u invertible and d > 1. The
claim follows.



2. The hint commanded us to make use of the equation sin(2z) = 2sin cos(z). This shows
that there is an infinite descending chain of ideals (sin(x)) C (sin(z/2)) C (sin(z/4)) C ....
It is clear that this chain does not get stationary, by looking at the real roots of those
functions.

Exercise 3

Let n > 1. For an n x n matrix M over some ring A denote by xp(T) = det(T - Id —M) its
characteristic polynomial.

1. Let A=Zlai; | 1 <4,j <n]and M = (ai;)i; € Mat,,(A). Show that xa (M) = 0.
2. Deduce a general form of the theorem of Cayley-Hamilton: Let A be a ring and let M be
any n x n matrix over A. Then /(M) = 0.

Solution.

1. Since A is integral, we can pass to the field of fractions of A. Now the regular cayley
hamilton applies. (Note that the calculation of the determinant does not depend on
whether we are in the field of fractions or not).

2. There is a surjective map m : Zla € A] — A given by a — a. By part 1 we find that
XM (M) =01in Zla € A]. Now 0 = 7(xpm(M)) = xa(M). Done?

Exercise 4

Let A be a principal ideal theorem.

1. Let a € A\ {0} and let m € A be prime. Set B := A/(a). For any n > 0 show that

0, ifve(a)<
dimA/(ﬂ) 7TnB/7Tn+1B = ’ 1 g (a) ="
1, ifvg(a) >n+1

2. Assume that M = A" @ Af(a1) @ - & Af(ag), N = A*® A/(b1) & --- & A/(b;) with
a;,b; € Anon zero and a;y | ag | --- | ag, by | --- | ;. Show that if M = N, then r = s,
k=1 and (a;) = (b;) for all 1.

Solution.

1. First, note that there are isomorphism (of A/(7) vector spaces)
" B/m" B = 1" (A/(a)) /7" (A)(a)) Z 7" A/((7" a) 0 (2").

We have seen before that for principal ideal domains, we have dim 4/ (7" A)/ (7"t A) =
1. The right hand side of the equation above is the same as 7" A/7" 1A if a € (7"F1),
otherwise we quotient out by some non-zero subspace. Hence we see that the quotient
above vanishes if and only if a ¢ 7!, that is, if and only if v, (a) > n + 1.



2. The exercise is confusing, because depending on how one thinks about modules over rings
(especially if one thinks of them as generalized vector spaces) it might seem tautological.
The main problem is that plain isomorphisms don’t necessarily respect direct sums. Over
non-commutative rings, there even are examples of modules S for which S @ S = S! Over
PIDs however, everything seems to be well-behaved. We solve the exercise in two steps.
Step 1: r = s. Let K = Frac(A) denote the field of fractions of A. Then upon tensoring
with K, the torsion part of M and N vanishes. Now by M &2 N, we find K" 2 K @ M =
K ® N = K*. As every basis of a finite dimensional vector space has the same number of
elements, this shows r = s. Appearently you have also already seen this in the lecture.
Step 2: The torsion part. We fix some prime element w € A and use part 1 of the exercise.
The isomorphism M = N yields an isomorphism 7" M /7" 1M = 7" N /7" 1 N. Choosing
n = vg(ag), this shows that the m-adic valuations of a; and b; agree. Moreover, the
number

dn, = dim g () 7" M /7" M = dim 4 () 7" N/7" TN

is the number of elements among the a; such that v;(a;) = n. Iterating over all prime
numbers 7, this shows that
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