Solutions to Sheet 5

Exercise 1

Let A be a ring and let ay,...,a, C A be ideals such that N;—; a@; = {0}. Assume that each

ring A/a; is noetherian. Show that A is noetherian.

Solution. Let 7; : A — A/a; denote the projections. We have the map
T=(m1,...,m) A= Afag x -+ X A/a,.

As the a; have intersection {0}, 7 is injective. Hence A is isomorphic to the subring Im(7) C
Aja; x -+ x A/a,. This shows that A is isomorphic to the subring of a noetherian ring, thereby
noetherian.

Exercise 2

Consider the matrix
—-36 14 —-24
S = .
18 6 12
Determine its elementary divisors and the kernel /cokernel of the map Z3 5, 72 (up to isomor-
phy).

Solution. We want to find simpler representatives of the residue class of S in the double
quotient GLa(A)\ Mataxs(A)/ GL3(A). We add twice the lower row to the upper row (which is
the same as multiplying by (%) from the left), which gives

0 26 0
S~ (18 6 12> '
Further transformations yield

0 26 0 . 0 26 0 . 0 26 0 N 6 0 O
18 6 12 6 6 12 6 0 O 0 26 0/
This allows us to calculate kernel and cokernel of S. We find

Ker(S) =7, Coker(S) = @®Z/6Z ®Z/26Z = Z/27 & L]7T8Z.

This shows that the elementary divisors are given by 2 and 78.
Exercise 3

Let A be a ring, let a C A be an ideal and let M, N;, i € I, be A-modules for some set I.

1. Show that there exists a unique isomorphism
®: PN ®a M) — (@NZ) Q@4 M
icl icl

such that ®((...,0,n; ®m,0...)) =(...,0,n4,0,...)®m forall n; € N;, i € I, m € M.



2. Show that there exists a unique isomorphism
U:Ala®@a M — M/aM

such that U((a + a) ® m) — am + aM for all a € A, m € M.

Solution. This exercise looks like you’d have to do lots of calculations, but there is the following
rule:

NEVER DO ANYTHING EXPLICITLY WHEN WORKING WITH TENSOR PRODUCTS.

1. We could try to solve this by somehow checking that the map is well-defined, working
everything out element-wise, and in the end showing that the isomorphism we obtain
is somehow unique. But this is messy, and probably confusing to anyone who wants to
follow the argument. It is much cleaner to work with universal properties. Note that
@Dicr(N; ®4 M) satisfies the following universal property:

For any A-module P and any tuple of bilinear maps (¢; : Ny x M — P);,
there is a unique linear map ® : @;cr(N; ® M) — P such that ®(n; @ m) = @;(n;, m).

That @;c;(N; ®4 M) satisfies this universal property is easy to see. The UP of the tensor
product gives linear maps N; ® M — P associated to ¢;, and we obtain ¢ by the UP of
the direct sum. But note that (P,c; N;) ® M satisfies the same UP. Indeed, one easily
checks that a tuple of bilinear maps (p; : N; x M — P);¢cs is the same data as a single
bilinear map (¢ : (@;c; Ni) x M — P). This automatically gives a unique isomorphism

(@Ni)®M§®(Ni®M),

el icl
which is of the desired form by construction.

2. I lied to you, this time we do things explicitely. The mapping
Alax M — M/aM, (a+a,m)— am+ aM.

is well-defined and bilinear, which is easy to check. This gives the desired map V¥ :
Aja®@a M — M/aM. It is surjective as ¥(1 ® m) = m + aM, and injective because if
U((a+a)®@m) =0+ aM, we have am € aM. Hence am = a'm’ for some a’ € a,m' € M.
In particular,

a@m=1®(am)=1x (dm)=d @om'=0€ A/a®s M.

This shows injectivity of ¥, and we are done.

HAHAHA FOOLS! The proof above doesn’t work! Namely, to show injectivity, it does
not suffice to check that there are no nontrivial elements of the form a ® m that get sent
to zero. There might still be linear combinations of such elements which are getting sent
to zero. But showing that > a; ® m; — 0 = > a; ® m; = 0 is really hard, there is no
way to get a handle on the sum.

So we try UPs again. We show that for any bilinear map (—, —) : A/a x M — P there is
a unique linear map ¢ : M /aM — P with p(am) = (a,m). This can be checked directly.



Exercise 4

Let A be a ring and let M, N be A-modules. A bilinear map (—,—) : M x M — N is called
symmetric if (mq,mg2) = (ma, m1) for all my, me € M. It is called alternating if (m,m) = 0 for
all m € M.

1. Show that there exists an A-module Sym? (M) and a symmetric bilinear map ¢ : M x
M — Symi(M ) with the following universal property: For every A-module N and for
every symmetric bilinear map (—,—) : M x M — N there exists a unique A-linear map
® : Sym?% (M) — N usch that for all my, mg € M

(my,mg) = ¥U((my, ma)).

Construct similarly an A-module A% (M) with a universal alternating bilinear map - :
M x M — A4 (M).

2. Show that Sym?%(A™) and A% (A") are free A-modules of ranks % and w
Solution.

1. Okay, the Sym-construction should be somehow similar to the construciton of ®, and
ideally all proofs of properties simply follow from the universal property of the tensor
product. In the construction of the tensor product, (mj,mg) corresponds to the image
of ¢(m1 ® my) for some suitable morphism . Imposing that (my, ma) = (mg, m1) corre-
sponds to the statement that in Sym?%, any morphism should send (m; ® ma — my @ m;)
to zero. Building on this, we define Sym?% (M) as (M ®4 M) /G, where G is the A-module
generated by elements of the form (m; ® ma —ma ®my). We check that this works. With
the notation of the exercise, we first obtain a morphism ¢ : M ® 4 M — N by the UP of
the tensor product.

(m1 ,mg)»—ﬂnl Kmo
%

M x M

By construction, we have G C Ker, so by the universal property of kernels, 1 extends
uniquely to a morphism W : Sym?% (M) = (M ®4 M)/G — N.

We define A% (M) similarly, this time we define G as submodule of M ® 4 M generated by
elements of the form (m ® m).

2. We'll again first focus on Sym?. First of all, note that the set of bilinear maps (—, —) :
A" x A" — N with values in an A-module N is the same as the set of matrices (a;;)i j=1,..n
with a;; € N. The argument essentially comes from linear algebra; we simply associate
to (—, —) the matrix ((e;,e;))i;. Now, note that the subset of symmetric bilinear forms
corresponds to those matrices with a;; = aj;. The set of these matrices has a natural
structure of a free A-module of rank w We need to show that this number is equal
to the rank of Sym?%. But for any A-module N, we have established the isomorphisms

n(n+1)
2

= {M = (aij)ij ‘ Qij € N and Qajj = aji}
= SymBiHom (A", A™; N) = HomA(Symi(/P)a N).



Here, SymBiHom (A", A™; N') denotes the space of symmetric bilinear maps A™ x A™ — N.

. n(n+1) | n(n+1) .
The functor sending N to N~ 2z is represented by A~ 2 . Hence, utilizing the Yoneda-
n(n+1)

lemma, we find that A~ 2 = = Sym?(A").

For A% (A™), we do exactly the same. The only thing that changes is the set of matrices
we look at, as this time we have isomorphisms

{M = (aij)ij ‘ ajj € N and ;5 = —agj; and a;; = 0} = AltBiHomA(A”, An, N)

. . . . . n(n—1)
The space of matrices is quickly seen to be isomorphic to N~ 2 .
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