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Exercise 1

Let A be a ring, f € A a non-zero divisor, a = (f) and b C A an ideal. Show that the natural
map
a®ab—>a-b, a®b—a-b

is an isomorphism.

Solution. As a = (f), we have an isomorphism ¢ : A = a, given by a — fa. Also note that
©lp : b — ab is an isomorphism. Now we have the diagram

a®4b ab
©Rb ®lo
AQab ———— b,

where all arrows are isos, yielding an isomorphism a ® 4 b — ab.

Exercise 2

Let A be a ring, let I be a set and let M, N;,i € I be A-modules.

1. Assume that M is finitely generated (resp. finitely presented). Show that the natural

map
M®@a[[Ni— [ M @aN;
i€l iel
is surjective (resp. bijective).
2. Take A = Z[Xo, X1,...], J = (X0, X1,...). Show that the natural map A/J ®4 A[T] —

A/J[T] is not injective.
Solution.

1. First let’s recall what finitely generated and finitely presented meant. An A-module M is
finitely generated if there exists a surjective morphism of A-modules

AP 5 ML

Furthermore, we call M finitely presented if the kernel of this map is again finitely gen-
erated (that is, there is a finite number of relations among the images of the generators),
which is to say that there is an exact sequence

A" - A" - M =0

for some integers m,n > 0.



Next, let’s find out what the natural map is. We have for 7 € I the projections [[;c; IV; —
N;, which we can tensor with M to obtain maps M ®a][;c; Ni — M &4 N;. The collection
of these maps gives the desired M ®4 [[;c; Ni — [I;e; M ®4 N;.

Note that if M = A®" this natural map is an isomorphism, as we have

A@n R4 HNz ~ (A ®4 HNZ)EBn o~ (H Ni)EBn o~ H(A@n R4 Nz)

Here we used the commutativity of finite direct sums and tensor products and that of
finite direct sums and products (note that finite sums are isomorphic to finite products).

This puts us in the following situation, where we can use the 5-lemma.

AP @ [Lier Ni —— A" @4 [[ie; Ni —— M @4 [;e; Ni —— 0 —— 0

5 5 i ||

[ier(A®™ @4 Ni) —— [Lie /(A% @4 Ni) —— [lie/(M ®4 Ni) —— 0 —— 0.

It may not be clear why the top and bottom row are exact. Here we will also not give
a complete answer. But the exactness of the top row follows directly by the fact that
the tensor product is right exact (a good way to remember what right-exactness means
is to remember that right-exact functors turn cokernels into cokernels), and exactness of
the bottom row follows from the fact that products are exact (not in general for abelian
categories but in the case of the category of R-modules). You’ll have to find out what
that last sentence means by yourself.

. Note that A/J @4 A[T] = A[T]/JA[T]. Take the element f = >, 2, 7% € A[T]. As
all elements in JA[T] only have a finite number of z; arise in the coefficients, we find
f & JA[T], hence f # 0 in A[T]/JA[T]. But f — 0 under the natural map: All the
coefficients z; get sent to zero.

Exercise 3

Let k be a field, K/k an algebraic field extension, and k an alebraic closure of k.

1. If V. — W is a k-linear injection of k-vector spaces, show that V®k — W ®k is a k-linear

injection.

2. Show that K/k is separable if and only if the ring K ®j k is reduced.

Solution.

1. All k-vector spaces are injective, hence every injective map V — W admits a section

W — V. Tensoring the section with k yields a section of V @3 k — W @}, k.

2. We show that the following statements are equivalent:

(a) K/k is separable.

(b) For all a € K, k[a]/k is separable.
(c) k[a] ® k is reduced for all a € K.
(d) K ® k is reduced.



(a) <= (b) is by definition. We show (b) <= (c). Let f be the minimal polynomial of
some a € K. As K is algebraic over k, f decomposes in k as f(z) = [[/;(z — a;)% with
a; # a; whenever ¢ # j. Now we find

kla] @4k = (k[z]/f(x)) @1 &k = klz]/ f(z) = klz]/(x — a)® x - x k[z]/ (@ — an) ™,
which is reduced if and only if d; = --- = d,, = 1, which is the case if and only if k[a] is

reduced over k.

For (d) = (c), we use part 1. The arguments there show that k[a] — K is injective,
hence k[a] ®j, k is isomorphic to a subring of K ®j, k. But a subring of a reduced subring
is reduced.

Lastly we show (a) = (d). Let ( = 3.7, a; ® b; € K ®j k be some element. Here,
the «; are elements of K, and as K is separated, we find that klay,...,a,]/k is a finite
separated extension. But now, by the primitive element theorem, there is some a € K
with k[a] 2 klaq, ..., o], and k[a] ® k is reduced by (c) <= (a).

Exercise 4

Let A be a ring and let I be an invertible A-module, i.e., there exists an A-module J such that
I®sJ=A. Let ¢ : M — N be a homomorphism of A-modules.

1. Show that ¢ is nonzero (resp. injective, resp. surjective) if and only if o @41 : M @41 —
N ®4 I is so.

2. Show that I is finitely generated.
Solution.

1. We have seen in the lecture that tensor products preserve surjectivity.
To see that ¢ = 0 if and only if ¢ ®4 I = 0, just tensor with J.

Lastly, suppose that ¢ ®4 I is injective. Let v : K — M be the kernel of ¢. We need to
show that ¢ = 0. We are in the following situation:
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We know that ¢ ® I is injective, hence ¢ ® I has to be zero. But by preserving 0, this
shows that ¢ = 0, hence the kernel of ¢ vanishes. This shows that ¢ is injective. The
same argument replaced with J shows that ¢ is injective if ¢ ® I is.

2. We have an isomorphism ¢ : I ® 4 J = A. Let’s look at the preimage of 1 under ¢. It
is given by some finite sum p~(1) = 37_; ix ® jp. We claim that iy, ...,i, generate I.
Indeed, look at the morphism 1 : A™ — I, e, — 4. Upon tensoring with J; we obtain a
morphism Yy ® 4 J : J* — A, and 1 € A lies in the image. Hence ¥ ® 4 J is surjective. But
this shows that v is surjective (by part 1).
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