Solutions to Sheet 7

Exercise 1

Let A — B be a homomorphism of rings, let M be an A-module and let NV be a B-module.

1. Show that the map
Homy(M,N) — Hompg(B®4 M,N), ¢~ (b®&@m — bp(m))
is a well-defined isomorphism.

2. Show that the map
M®AN—-(M®sB)®@p N, mn— (mel)en

is a well-defined isomorphism.

3. Deduce that S™'M; @4 S™'My = S~1M; ®Rg-14 S—1M, for two A-modules M;, M, and
a multiplicative subset S C A.

Solution.

1. A function ¢ € Homp(B ®4 M, N) is uniquely determined by its values on elementary
tensors. We have p(b®m) = bp(1®m), so in reality ¢ is uniquely determined by its values
on 1®m. But any such morphism gives rise to a A-linear map viam — 1@m — p(1@m),
and conversely any ¢ € Hom (M, N) yields a unique morphism via b ® m — bip(m) €
Homp(B ®4 M, N). These constructions are quickly checked to be mutually inverse.

Remark. This is a special case of the so called Hom-Tensor adjunction. It states that
there is a natural isomorphism

Homp(M ®4 L, N) = Hom (M, Hompg(L, N)).

In more fany terms, this says that the functors Hompg(L, —) : Modp — Mod 4 and —®4 L :
Mod4 — Modp is an adjoint pair, for any B-module L.

2. Again, universal properties. Of course, we’ll want to show that this is an isomorphism of
B-modules. We do this by using the universal property. What is a B-linear morphism
¢: (M ®aB)® N — P? The same as a B-bilinear map ® : (M ®4 B) x N — P.
But as ®(m ® b,n) = b®(m ® 1,n), any such bilinear map is uniquely determined by its
values on elements of the form (m ® 1,n), hence it really is the same as a A-bilinear map
M x N — P, given by (m,n) — (m® 1,n) = ®(m ® 1,n). This construction is quickly
verified to be an isomorphism. But now (M ®4 B) @ p N satisfies the universal property
of M ®4 N.

3. We apply the above with S™'M; = M and S~'M; = N and B = S~'A. Note that
STIMy ®4 S7TA = S71(S7IMy) = S0y, which gives (following the above)

STIM @4 S7IMy = (M @4 S A) @g-14 STIM; =2 S7IM) @g-1,4 ST M.



Exercise 2

Let A be a ring. We define the support of an A-module M as Supp(M) = {p € Spec(A4) | M, #
0}.

1. Assume M is finitely generated. Show that Supp(M) = {p € Spec(A) | M ®4 k(p) # 0},
where k(p) = Quot(A/p).

2. Assume M, N are finitely generated A-modules. Show Supp(M ®4 N) = Supp(M) N
Supp(IV).

Solution.

1. We will show that M, # 0 if and only if M ®4 k(p) # 0. The map A — k(p) factors
through the map A, — k(p), and we find M @4 k(p) = M, ®4, k(p), this directly gives
the implication M ®4 k(p) #0 = M, # 0.

For the other direction, we use Nakayama’s Lemma. It (or at least one version of it) states
that if N # 0 is a finitely generated module over a local ring B with maximal ideal I, we
have IN # N. In our situation, if we assume M, # 0, Nakayama says

My ®a, k(p) = M, /pM, # 0.
Done.

2. We'll show that (M ®4 N) ® k(p) # 0 if and only if M ®4 k(p) # 0 and N ®4 k(p) # 0.
Exercise 1.2 gives the isomorphism

(M @4 k(p)) Qppy (N @ak(p) =M 4 (N@ak(p))=(Mo4AN)@ak(p).

From here we can directly check the desired equivalence.

Exercise 3

Let A be a ring, let S C A be a multiplicative subset and let M, N be A-modules.

1. Assume that M is finitely presented A-module. Show that the map
S~ Homy (M, N) — Homg-14(S™'M,S™IN), ¢/s+ (m/t— o(m)/st)
is a well-defined isomorphism.

2. Construct a counterexample to the above if M is only assumed to be finitely generated.

Solution.

1. First, note that we always (without hypothesis on M) obtain such a map. This follows
(for example) from exercise 1.1 with B = S~'A. We obtain the isomorphism

Hom 4 (M, S™'N) = Homg-1,4(S~1M,S7IN).



Also, the natural map N — S™'N yields a map
Hom (M, N) — Hom4(M,S™IN).

Finally, as multiplication with any s € S gives an isomorphism on the right hand side, we
obtain a morphism

S~ Hom (M, N) — Hom(M,S™'N) = Homg-1,4(S™'M,S7IN).

by the universal property of localization on modules. One readily checks that this mor-
phism is the one provided by the exercise.

Now we have to show that this is an isomorphism if M is finitely presented. As usual, we
write M as part of a short exact sequence

0= A" 5 A" - M — 0.

Now we use that Hom4(—, V) is right-exact. Hence applying Hom4(—, N) yields an exact
sequence

0 — 0 — Homy(M,N) — Homy (A", N) = N" — Homy(A™, N) = A™.
Localizing at S is exact, so we obtain
0—0— S Homy(M,N) — (STIN)" — (STIN)™.

Similarly, we can localize at S first and then apply Homg-14(S~' (=), S™'N), which yields
the exact sequence

0— 0 — Homg-14(S™'M,S7IN) = (STIN)™ — (S7IN)™.

Now we can use the 5-lemma again!

0 0 S Homu (M, N) —— (§~1A)" —— (S-14)m
0 —— 0 —— Homg-14(S7'M,S7IN) —— (§71A)"» —— (§71A)™

2. A standard example seems to be the following. Let A = k[z,y1,ya,...]| be the polynomial
ring in variables indexed by N. Let M = A/(y1,92,...), N = A/(xy1,2%y2,...) and
S = {l,z,2%,...}. Now let’s compare both sides of the morphism. Note that M is
generated by 1, so that any A-linear morphism ¢ : M — N is uniquely determined by the
value of ¢(1) € N. Now we have 0 = y1¢(1) = y2¢(1) = ..., which shows that any lift
©(1) € R is infintely divisible by x, hence ¢(1) = 0. On the left hand side, we find that
S™IM = S7IN = k[z*!], so there are many S~! A-linear morphisms S™*M — S~IN.

Exercise 4

Let A be a principal domain and let f € A\ {0} be a non-unit. Show that the A[T]-module
(f,T) C A[T] is not flat.

Solution. Consider the map given by multiplication with f, which we will denote as ¢ : A — A.
It is injective. Note that A = A[T]/(T). We want to show that (f,T) ® ;7] ¢ is not injective,
showing that (f,T") is not flat. We have an isomorphism (of A[T]-modules)

(faT) ®A[T] A= (faT)/T(f7T>a

and (f,T) ® ¢ corresponds to the endomorphism given by multiplication with f under this
identification. Now, T"# 0 in (f,T)/T(f,T), but fT = o(T) = 0.
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