Solutions to Sheet 9

Exercise 1

Assume that d € Z is not a square. Determine all z,y,z € Z with ged(z,y,z) = 1 and

x? — dy? = 2.

Solution. We do the same as in the lecture. First note that
L=A{(z,y,2) | 2* —dy’ =2} = {(x,y) e Q* | 2® —dy’ =1} = L.

Just as in the lecture we try to simultaneously solve the equations

2 —dy? =1
r+q=y
for ¢ € Q. Some calculations later we arrive at the unique non-trivial solution (z,y) =
(}fﬁgz, Hzqu). Writing ¢ = % with (u,v) = 1, we find that all solutions are of the form

if v2 4+ du? even.

( ) {(v2+du2,2uv,v2—du2), if v2 4+ du? odd
x,Yy,z)=

2 2 2 2
ve+du v—du
(5w, =),

Exercise 2

Let k be an algebraically closed field and let f(x) € k[z] be a polynomial. Determine the set
Spec(k[z,y]/(y* — f(x))) and the cardinality of all fibers of the map

Spec(klz, y]/(y* — f(x))) — Spec(k[z])
that is induced by the k algebra homomorphism k[x] — k[z,y]/(v* — f(z)), z +— .

Solution. We have seen that the prime ideals of k[z,y] are those of the form (z —a,y — b) for
a,b € k. The prime ideals of k[x,y]/(y?> — f(z)) are now those which contain y? — f(x).

In the following, we assume char k # 2. There are two types of prime ideals in k[x]. Those of
the form (x — a) for a € k and the zero-ideal. Let 7 : Spec(k[z,y]/(y? — f(x))) — Spec(k[z])
denote the morphism on spectra induced by the inclusion. We calculate the fibers. On the
special fibers we find

7 ((z — a)) = Spec(k[z, 4]/ (y* — f(x)) @fa), 2sa k)-

We can calculate the tensor product explicitely. We find

Bl 9]/ (0 = [ (@) @ua) k= Kz, 9]/ (v = F(2), 2 — a) = K[y)/ (s — f(a)).
And here we have
K, if f(a) #0
klyl/(y*),  if f(a) =0.

Hence the fibers either are given by two distinct "degree 1"-primes or by a single "degree 2'-
prime.

k[yl/(y* — f(a)) = {



At the generic fiber we have

7 1((0)) = Spec(klz, y]/(y* — f(2)) ], wosa k().

Here the algebra calculates to

klz, yl/ (v — f(2)) ©rfa], 2sa k(@) = k(@) Y]/ (4* — f(2)).

k(@)[yl/ v, if f(z) =0
k(x)yl/ (v — f(x)) =S k(z)?, if f(z) = g(z)? #£ 0
k(x)[\/f(x)], otherwise.

In the first case we have one prime ideal, in the second there are two, in the third there is one
again. Note that in all cases, we are somehow "degree 2". In all three cases, the algebras lying
over the primes are k(x)-algebras of dimension 2.

Remarks. Two remarks on calculations like this.

1. When calculating fibers as above, there is a neat formula to calculate tensor products,
which I call Torsten’s magic potion formulaﬂ It is given by the following;:

Elyr, - yml /T @g kfan . wn)p Kl21s - 2] /T
Z kY- yme 21 2l /(L e(@n) = (@), (@n) — Y(an)).-

2. Let f: A — B and p € Spec(A). In the last exercise session we discussed how using
the homomorphism theorems, Spec(f)~!(p) = Spec(B ®4 k(p)) because the prime ideals
in B ®4 k(p) are identify with those prime ideals "above and below" p. Here, I'd like to
discuss a perhaps less tedious way of arriving at this formula.

We will need another description of Spec(R), which is
Spec(R)={f:R— K}/ ~,

where K are arbitrary fields and (f; : R — Ki) ~ (f2 : R — K3) if and only if there
is some field K’ with morphisms K; — K', Ko — K’ such that f; = fy after applying
those morphisms. The bijections are given by sending p € Spec(R) to the morphism
R — k(p) (in one direction), and by sending f to Ker(f) (in the opposite direction). With
this description, a morphism of rings induces a morphism on spectra by precomposition.
Remember the universal property of the tensor product of rings:

A+——R

That is, given two R-algebras A and B and T a morphism A ®z B — T is the same as
R-algebra morphisms A — T', B — T such that everything commutes with the structure
morphisms from R.

T do not know who Torsten is, or whether it’s Torsten or Thorsten.



Now back to the fiber. We find
Spec(f) (A= k(p)) ={lg: B— K] |go f ~(A—k(p)}

and the set on the right is exactly given by the set of morphisms g such that there are
commutative squares

BTK

T

A —— k(p)

up to equivalence, which is the same as Spec(B ® 4 k(p)) by the universal property of the
tensor product.

Exercise 3

Let m,n > 1 and let ¢, = €>™/™ & C be a primitive m-th root of unity. Set G := ((,,) € C*.
We let G act on A == C[Th,...,T,] via (g, f(T1,...,Ty)) — g f = f(gTh,...,qTn).

1. Determine the ring of invariante A := {f € A|g- f = f forall g € G}.
2. Set m =n = 2. Find a presentation A% = C[Xy,...,X]/(h1,..., ).

Solution.

1. We simply write down what happens. Let f =3 . jenn a;T' € C[Ty,...,Ty]. Now
applying (,, gives
e.9]
Cmf = Cn > aiT',
k=0 |i|=k
where [i| = 3°7_;4;. Now it is easy to see that (,,f = f if and only if the only a; = 0
whenever m 1 |i.

2. By the above, we find that A® = C[T?, TyTz, T2]. This is also given by C[X,Y, Z]/(Y? —
XZ) = B. Tosee that A® = B, look at C[X,Y, Z] — C[T}, Ts], X > T2,Y s T\ Ts, Z v
T2. The kernel of this morphism contains (Y2 — XZ). Also, the image, AC has Krull-
dimension at least 2, as we have the chain of prime ideals 0 C (TZ, T1T2) C (T%, Ty T2, T3).
By Krull’s PID theorem, the dimension of C[X,Y, Z]/(Y? — X Z) is two. Hence the kernel

is generated by Y2 — X Z, as any other generator would decrease dimension even more.

Exercise 4

Let A be a ring and M be a finitely generated A-module. Let n > 1 and let f: A™ — M be a
surjection. Show that K := Ker(f) is finitely generated.

Solution. As M is finitely generated, there is a short exact sequence 0 - Q — A™ - M — 0
with @ finitely generated. Our situation is now the following.

0 Q Am 5 M 0
I ! |
387 Ja? id
~ + J; 4

0 K A M 0




We want to construct morphisms o and § making the diagram above commute, in the hope of
being able to apply the snake lemma then. First, we construct «. It suffices to find values for
a(e;). We simply choose any a(e;) € f~(g(e;)). Now by the universal property of kernels, we
also get 8. We want to show that K is finitely generated. The snake lemma gives a short exact
sequence

0 — Coker 8 — Coker a — 0.

Hence, Coker f = Coker a« = A™/Im(«) is finitely generated. We also have the short exact

sequence
0 — Im(8) — K — Coker(3) — 0.

As Im(p) is finitely generated, we obtain that K is finitely generated. Indeed, let (fi,..., fn)
be generators of Im(3) and (gu, .. ., gm) be lifts of generators of Coker(8) = K/Im(3). Now we
have a diagram

0 A" Amtn A™ 0
ei’_\ljfi l ej’\_‘:gj
0 —— Im(p) K Coker() —— 0

from where we can use the snake lemma agin.
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