
Solutions to Sheet 10

Exercise 1

Let k be a field and let f : A → B be a k-algebra homomorphism with B a finitely generated
k-algebra. Let m ⊂ B be a maximal ideal. Show that f−1(m) ⊂ A is a maximal idea.

Solution. Write B = k[x1, . . . , xn]/I. If m ⊂ B is maximal, then B/m ∼= K, where K/k is a
finite field extension by Hilbert’s Nullstellensatz. We have the morphism

A/f−1(m) → B/m = K,

which is readily seen to be injective. Hence A/f−1(m) is isomorphic to some sub-k-algebra of
a finite field extension of k. But now it is a finite k-algebra, in particular a field itself. This
shows that f−1(m) is maximal.

Exercise 2

Let n ≥ 0 and Z ⊂ kn be an algebraic subset. Show that I(Z) is a prime ideal if and only if
Z = Z1 ∩ Z2 with Z1, Z2 algebraic implies Z = Z1 or Z = Z2.

Solution. A space sufficing the latter condition is called irreducible. I think all we know about
V (−) and I(−) is

• Hilbert’s Nullstellensatz: I(V (J)) =
√

J and V (I(Z)) = Z.

• I(−) and V (−) are inclusion-reversing.

• V (J1 ∩ J2) = V (J1J2) = V (J1) ∪ V (J2) and V (J1 + J2) = V (J1) ∩ V (J2)

• I(Z1 ∩ Z2) = I(Z1) + I(Z2) and I(Z1 ∪ Z2) = I(Z1) ∩ I(Z2).

• The Zariski-Topology: This is the coarsest topology with sets of the form V (I) closed.

If Z is irreducible and f1f2 ∈ I(Z), we have V (f1f2) ⊃ Z find (V (f1) ∩ Z) ∪ (V (f2) ∩ Z) = Z,
hence V (f1) ⊃ Z or V (f2) ⊃ Z, which shows f1 ∈ I(Z) or f2 ∈ I(Z). Hence I(Z) is prime.

On the contrary, if I(Z) is prime and Z = Z1 ∪ Z2, we find I(Z) = I(Z1 ∪ Z2) = I(Z1)I(Z2).
Wlog, This implies I(Z1) = I(Z), hence Z = V (I(Z)) = V (I(Z1)) = Z1.

Exercise 3

A ring is called Jacobson if each prime ideal is the intersection of all maximal ideals containing
it.

1. Show that a ring A is Jacobson if any only if for all primes p ⊂ A and a ̸∈ p there exists
a maximal ideal m ⊂ A such that a ̸∈ m and p ⊂ m.
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2. Let f : A → B be an injective, integral morphism and assume that B is Jacobson. Show
that A is Jacobson. Deduce from the lecture that for each field k and n ≥ 0 the ring
k[X1, . . . , Xn] is Jacobson.

Solution.

1. There is not much to do. If A is Jacobson, then every prime ideal is the intersection
containing it, hence for every a ̸∈ p there is some m ⊃ p with a ̸∈ m. The other direction is also
readily verified.

2. First of all, note that if m ⊂ B is maximal, f−1(m) ⊂ A is maximal as well. This follows
directly from the going-up property of integral extension.

Also by going-up (or more generally, lying over) we find some q ∈ Spec(B) with f−1(q) = p. As
B is Jacobson we have q = ⋂

m⊃qm, so that we obtain

p = f−1(q) =
⋂
m⊃q

f−1(m) =
⋂

f−1(m)⊃p

f−1(m).

Alternative proof. We can also use part 1. Let p ∈ Spec(A), a ∈ A be any elements. By the
lying-over property for integral extensions we find some prime q ∈ Spec(B) with q ∩ A = p.
Now there is some maximal ideal m ∈ Spec(B) with q ⊂ m and a ̸∈ m. But now let m′ = A ∩m.
This is a maximal ideal containing p, not containing a. We are done with part 1.

Exercise 4

Let A be a local ring and M a finitely presented, flat A-module. Show that M is free. Hint:
Let m ⊂ A be the maximal ideal. Use prev sheet to construct a short exact sequence 0 → K →
An → M → 0 with K finitely generated and (A/m)n → M/mM an isomorphism. Now use
flatness of M and the snake lemma to check that 0 → K/mK → (A/m)n → M/m → 0 is again
short exact.

Solution. We follow the hint. Write k = A/m. Note that we can choose n as the k-dimension
of M/m: The dimension is finite by finite-generatedness of M and right-exactness of tensoring
with A/m = k. By Nakayama’s Lemma, any choice of generators of M/m lifts to generators
of M . Hence we can construct a surjective morphism of A-modules An → M which is an
isomorphism up to tensoring with k. Note that mA ↪→ A, so after tensoring with M we find
m ⊗A M ↪→ M . Also, tensoring the exact sequence

0 → K → An → M → 0

with m yields the exact sequence

m ⊗A K → mn → m ⊗A M → 0.

All information up to now is encoded in the following diagram with exact rows.

m ⊗ K mn m ⊗A M 0

0 K An M 0

0 0 (A/m)n M/mM 0
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The snake lemma on the top two rows yields a short exact sequence

0 → K/mK → (A/m)n → M/mM → 0,

and we obtain K/mK = 0, i.e. K = mK. But K is finitely generated (as M is finitely
presented), and this implies K = 0 by Nakayama.

There is a better way to think about the homological algebra here. We know already that
tensoring is right-exact, but in general not left-exact. As it turns out, the failure of left-exactness
can be captured by certain higher derived tensor products, also known as Tor-functors. The
idea is simple, albeit unintuitive if you have never encountered cohomology groups: Given a
short exact seqeunce of A-modules

0 → M ′ → M → M ′′ → 0

and another A-module N , there are certain functors TorA
i (N, −) which capture the failure of

left-exactness in that they fit into a long exact sequence

. . . Tor2(N, M ′′) → Tor1(N, M ′) → Tor1(N, M) → Tor1(N, M ′′)
→ N ⊗A M ′ → N ⊗A M → N ⊗A M ′′ → 0.

One can show that TorA
i is symmetric, i.e., Tori(M, N) = Tori(N, M). Using Tor, one finds

that M being flat is the same as Tori(M, N) = 0 for all i > 0. This should make sense: If we
have any exact sequence ending in N , then thensoring with M shouldn’t make this not-exact, so
Tor1(M, N) = 0. Knowing this, we see that any sequence ending in M is universally exact, i.e.,
still exact if we tensor it with any other A-module N . In particular, exactness of the sequence

0 → K → An → M → 0

implies exactness of the sequence

TorA
1 (M, A/m) = 0 → K/mK → (A/mA)n → M/mM → 0.
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