Solutions to Sheet 10

Exercise 1

Let k be a field and let f : A — B be a k-algebra homomorphism with B a finitely generated
k-algebra. Let m C B be a maximal ideal. Show that f~!(m) C A4 is a maximal idea.

Solution. Write B = k[z1,...,2z,]/]. If m C B is maximal, then B/m = K, where K/k is a
finite field extension by Hilbert’s Nullstellensatz. We have the morphism

A/f 1 (m) - B/m = K,

which is readily seen to be injective. Hence A/f~1(m) is isomorphic to some sub-k-algebra of
a finite field extension of k. But now it is a finite k-algebra, in particular a field itself. This
shows that f~!(m) is maximal.

Exercise 2

Let n > 0 and Z C k™ be an algebraic subset. Show that [(Z) is a prime ideal if and only if
Z = Z1 N Zy with Z1, Zy algebraic implies Z = Z, or Z = Zs.

Solution. A space sufficing the latter condition is called irreducible. 1 think all we know about
V(—) and I(—) is

« Hilbert’s Nullstellensatz: I(V(J)) =+/J and V(I(Z)) = Z.

I(—) and V(—) are inclusion-reversing.

V(Jindy) =V (JiJ2) =V(J1)UV(J2) and V(J; + J2) = V(J1) NV (J2)

I(Zl N ZQ) = I(Zl> + I(ZQ) and I(Zl U ZQ) = I(Zl) N I(ZQ)

o The Zariski-Topology: This is the coarsest topology with sets of the form V(I) closed.

If Z is irreducible and f1fo € I(Z), we have V(f1f2) D Z find (V(f1)NZ)U(V(f2)NZ) = Z,
hence V(f1) D Z or V(f2) D Z, which shows f; € I(Z) or fo € I(Z). Hence I(Z) is prime.

On the contrary, if I(Z) is prime and Z = Z; U Zy, we find I(Z) = I(Z1 U Z2) = 1(Z1)1(Z7).
Wlog, This implies I(Z1) = I(Z), hence Z =V (I(Z)) =V (I(Z1)) = Z1.

Exercise 3

A ring is called Jacobson if each prime ideal is the intersection of all maximal ideals containing
it.

1. Show that a ring A is Jacobson if any only if for all primes p C A and a € p there exists
a maximal ideal m C A such that a ¢ m and p C m.



2. Let f: A — B be an injective, integral morphism and assume that B is Jacobson. Show
that A is Jacobson. Deduce from the lecture that for each field £ and n > 0 the ring
E[X1,...,X,] is Jacobson.

Solution.

1. There is not much to do. If A is Jacobson, then every prime ideal is the intersection
containing it, hence for every a ¢ p there is some m D p with a € m. The other direction is also
readily verified.

2. First of all, note that if m C B is maximal, f~1(m) C A is maximal as well. This follows
directly from the going-up property of integral extension.

Also by going-up (or more generally, lying over) we find some q € Spec(B) with f~1(q) = p. As
B is Jacobson we have q = ()5, m, so that we obtain

p=fa= )= (] fH(m)

m>g =1 (m)>p

Alternative proof. We can also use part 1. Let p € Spec(A), a € A be any elements. By the
lying-over property for integral extensions we find some prime q € Spec(B) with qN A = p.
Now there is some maximal ideal m € Spec(B) with ¢ C m and a ¢ m. But now let m’ = Anm.
This is a maximal ideal containing p, not containing a. We are done with part 1.

Exercise 4

Let A be a local ring and M a finitely presented, flat A-module. Show that M is free. Hint:
Let m C A be the maximal ideal. Use prev sheet to construct a short exact sequence 0 — K —
A" — M — 0 with K finitely generated and (A/m)” — M/mM an isomorphism. Now use
flatness of M and the snake lemma to check that 0 - K/mK — (A/m)" — M/m — 0 is again
short exact.

Solution. We follow the hint. Write K = A/m. Note that we can choose n as the k-dimension
of M/m: The dimension is finite by finite-generatedness of M and right-exactness of tensoring
with A/m = k. By Nakayama’s Lemma, any choice of generators of M/m lifts to generators
of M. Hence we can construct a surjective morphism of A-modules A™ — M which is an
isomorphism up to tensoring with k. Note that mA < A, so after tensoring with M we find
m®a M — M. Also, tensoring the exact sequence

0->K—-A"—-M—0
with m yields the exact sequence
mIUK—-m" —=>mes M —0.

All information up to now is encoded in the following diagram with exact rows.

me K m" msM —— 0
| | I

0 K A" M 0
| | |

0 0 (A/m)" —— M/mM —— 0



The snake lemma on the top two rows yields a short exact sequence
0— K/mK — (A/m)" - M/mM — 0,

and we obtain K/mK = 0, i.e. K = mK. But K is finitely generated (as M is finitely
presented), and this implies K = 0 by Nakayama.

There is a better way to think about the homological algebra here. We know already that
tensoring is right-exact, but in general not left-exact. As it turns out, the failure of left-exactness
can be captured by certain higher derived tensor products, also known as Tor-functors. The
idea is simple, albeit unintuitive if you have never encountered cohomology groups: Given a
short exact seqeunce of A-modules

0—>M —-M-—M' -0

and another A-module N, there are certain functors Tory (N, —) which capture the failure of
left-exactness in that they fit into a long exact sequence

... Torg(N, M") — Tory (N, M') — Tory (N, M) — Tory (N, M")
—>N®AM/—>N®AM—>N®AM”—>O.

One can show that Tor{' is symmetric, i.e., Tor;(M, N) = Tor;(N, M). Using Tor, one finds
that M being flat is the same as Tor;(M, N) = 0 for all ¢ > 0. This should make sense: If we
have any exact sequence ending in IV, then thensoring with M shouldn’t make this not-exact, so
Tory (M, N) = 0. Knowing this, we see that any sequence ending in M is universally exact, i.e.,
still exact if we tensor it with any other A-module N. In particular, exactness of the sequence

0->K—-A"—-M—0
implies exactness of the sequence

Torf{ (M, A/m) =0 — K/mK — (A/mA)" — M/mM — 0.
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