

Solutions to Sheet 12

Exercise 1

Let A be a ring and let G be a finite group acting on A by ring automorphisms. Let A^G be the ring of invariants of G in A .

1. Show that A is integral over A^G .
2. Assume that A is a domain with quotient field K . Show that $K^G = \text{Quot}(A^G)$.

Solution.

1. Let $x \in A$ be any element. Then

$$P_x(T) = \prod_{g \in G} (T - g(x))$$

is a monic polynomial with coefficients invariant under G (by symmetry). As $P_x(x) = 0$, x is integral over A^G , and we are done.

2. G acts on K via $g(\frac{x}{y}) = \frac{g.x}{g.y}$. One readily verifies $\text{Quot}(A^G) \subseteq K^G$. For the other inclusion, assume $\frac{x}{y} \in K^G$. Now we can write

$$\frac{x}{y} = \frac{x \prod_{\text{id} \neq h \in G} h(y)}{\prod_{h \in G} h(y)}.$$

The denominator is G -invariant. But now the numerator is as well, as

$$x \prod_{\text{id} \neq h \in G} h(y) = \frac{x}{y} \prod_{h \in G} h(y)$$

is a product of two G -invariant elements. Hence $\frac{x}{y}$ can be expressed as the quotient of two G -invariant objects. I struggled way too much with this exercise.

Exercise 2

1. Let A be a normal domain with quotient field K and let G be a finite group acting on A by ring automorphisms. Show that A^G is normal.
2. Let k be a field of characteristic $\neq 2$. Show that $k[x, y, z]/(z^2 - xy)$ is normal.

Solution.

1. This is just collecting what we did in exercise 1. A is algebraically closed in its quotient field K . Also, A is integral over A^G and K is integral over $K^G = \text{Quot}(A^G)$. But now K is integral over A^G , in particular $K^G \subseteq K$ is integral over A^G .
2. We have $k[x, y, z]/(z^2 - xy) \cong k[x^2, xy, y^2] = k[x, y]^G$, where $G = \{\pm 1\}$ acts via

$$(-1).f(x, y) = f(-x, -y).$$

Now we are in the situation of part 1, and as $k[x, y]$ is normal, we are done.

Exercise 3

Let L/K be a finite Galois extension of number fields with Galois group G . Show that \mathcal{O}_L is stable under action of G and that $\mathcal{O}_L^G = \mathcal{O}_K$.

Solution. To show that G is invariant under the action of G , let $x \in \mathcal{O}_L$ be an element with $f(x) = 0$, where $f \in \mathcal{O}_K[T]$ is monic and irreducible. Let $\sigma \in \text{Gal}(L/K)$. Write f^σ for the polynomial that arises when applying sigma to the coefficients of f . Now $f^\sigma(\sigma x) = \sigma(f(x)) = 0$. (I just realized we have $f^\sigma = f$. Whatever.)

We now show the second statement. By Galois theory, we know that $L^G = K$. As $\mathcal{O}_L \subseteq L$ this shows $\mathcal{O}_L^G = \mathcal{O}_L \cap L^G$. By definition, \mathcal{O}_L is the integral closure of \mathcal{O}_K in \mathcal{O}_L . This directly shows $\mathcal{O}_L^G \supseteq \mathcal{O}_K$. The other direction follows because every element in $\mathcal{O}_L \cap K$ is integral over \mathcal{O}_K , which (by the definition of the integral closure) implies that $\mathcal{O}_L \cap K \subseteq \mathcal{O}_K$.

Exercise 4

Let k be a field and let $A := k[x, y]/(y^2 - x^3 - x^2)$.

1. Show that A is a domain.
2. Show that $t = y/x \in \text{Quot}(A)$ does not lie in A .
3. Show that t is integral over A .
4. Show that $\text{Quot}(A) = k(t)$ and that $k[t] \subseteq \text{Quot}(A)$ is the normalization of A .

Solution.

1. We have

$$k(x)[y]/(y^2 - x^2(x+1)) \cong k(x)[y]/((y/x)^2 - (x+1)),$$

and this is a quadratic field extension. In particular, $(y^2 - x^3 - x^2)$ is irreducible in $k(x)[y]$, hence also irreducible in $k[x, y]$. Alternatively, the Eisenstein criterion over $k[x]$ works.

2. Suppose $x/y \in A$. Now we have $(x, y) = (x)$. But in $k[x, y]/(y^2 - x^3 - x^2)$, we have $y \notin (x)$.
3. We have $t^2 = \frac{y^2}{x^2} = x + 1 \in A$.
4. What does this even mean?! The normalization is simply the integral closure of A in $\text{Quot}(A)$. First, note $k(t) \subseteq \text{Quot}(A)$ because $t \in \text{Quot}(A)$. For the reverse statement, note that the calculation in part 1 shows that

$$\text{Quot}(A) \subseteq k(x)[y]/(y^2 - x^3 - x^2) = k(x)[t]/(t^2 - x - 1) = k(t).$$

Let $N \subseteq \text{Quot}(A)$ denote the normalization of A . We have $N \supseteq k[t]$ because t is integral over A , and $N \subseteq k[t]$ because $k[t]$ is integrally closed in $k(t) = \text{Quot}(A)$.