Solutions to Sheet 1

Exercise 1

Let n € N and (, = *™/? € C. Recall that Z[(,] denotes the smallest subring of the field of
complex numbers that contains Z and (,. Show that 1/3 & Z[(,].

Solution. There are multiple ways to show this. Note that if 1/3 € Z[(,], we’d have Z[1/3] C
Z[¢,] as well. But there is a fundamental difference between Z[(,] and Z[1/3]. The latter is a
finite free Z-module while the former is neither finite nor free. As Z is a PID and submodules
of finite free modules over a PID are finite and free, we have a contradiction. This implies other
differences between the two rings. For example, 1/3 € Z[1/3] is not integral over Z, while every
element of Z[(,] is.

Exercise 2

Here, (3 is as in Exercise 1. For f € N we define

V- 1
Af:{a+fb$\a,b€Z}.

1. Show that Ay C A; = Z[(3] is a subring of C for all f € N.
2. Let || denote the absolute value on C. Show that |w|* € Z for all w € Z[C3].

3. Show that the unit group Z[(3]* is equal to {w € Z[(3] | |w| = 1}.
Solution.

1. Note that (3 = @ (up to choice), and that 1+ (3 + ¢ = 0. Also note that Ay =
{a+ fb¢3 | a,b € Z}. We have

(a+ fbC3)(c+ fd3) = ac+ flad + cb)(z — f2bd(1 + (3) € Ay,

so Ay is a closed under multiplication. We have Ay C Ay whenever f'| f, and A; = Z[(3]
is a subring of C.

2. Remember that for the absolute value on C we have
@ +iy* = (z +iy)(z — iy) = 2* + °.

for f € N and a,b € Z this gives

3. All units have invertible absolute value, hence we can conclude that if w is a unit, it has
absolute value 1. This shows one implication. But |w\2 = 1 implies that ww = 1, hence
w™! =@ € Z[(3], which shows the reverse implication.



Exercise 3

An integral domain A is called Euclidean if there exists a function n : A\ {0} — Z>¢ such that
for all @ € A and b € B\ {0} there exist ¢,r € A such that a = bg + r and either r = 0 or
n(r) < n(b).

1.
2.

3.

Show that Euclidean domains are principal ideal domains.
Show that the ring Z[(3] is euclidean.

Show that Z[v/2] is euclidean.

Solution.

1.

2.& 3.

Let R be a euclidean ring with norm function §. Let a C R be an ideal, and let a € a
be an element such that §(a) is minimal among all elements of a. Now we have a = (a).
Indeed, if f € a is another element, we have f = qa + r with ¢ € A and either d(r) < §(a)
orr=0. Asr = f—qa € aand §(a) is already minimal among elements in a, §(r) < d(a)
is not possible. Therefore we find r = 0, hence f = qga € (a).

We show that v : z — |N(z)| is a euclidean norm function in both cases (where N denotes
the respective norm function). Write O for the respective rings. Let a,b € Ok, b # 0.
We want to show that there are r € Ok and ¢ € Ok with v(r) < v(b) and a = gb + r.
The idea is simple. We try to approximate § € K = Frac(Og) by some algebraic integer
q € Ok such that |[N($ —¢)| < 1. Once we found such a ¢, we set r = a — gb € Ok and
find

o) = INW) = [N (§ = a)| < NG =),

which finishes the proof.
So we really only need to show that for Ox = Z[(3] and O = Z[/2], there are such

elements ¢. In our cases, this is realtively simple. In the case of Z[v/2] we write 7= u+vv/2
and choose z,y € Z such that |z — u| < 1/2 and |y — v| < 1/2. Now
N =g < |@—w? -2y -0 <3<,

and we are done. The case O = Z[(3] works the same way. Here we find

N =g =|@-w?+@-u)y-v)+@-v?[<i<L

Exercise 4

Let o,y € Z such that y? — y = 3. Show that (z,y) = (0,0) or (z,y) = (0,1).

Solution. As y and y — 1 share no prime factors, the equation y? — y = y(y — 1) = 23 implies
that both y and y — 1 are cubes. But this implies y € {0,1}, and it’s easy to see that all
solutions are of the given form.
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