
Solutions to Sheet 1

Exercise 1

Let n ∈ N and ζn = e2πi/n ∈ C. Recall that Z[ζn] denotes the smallest subring of the field of
complex numbers that contains Z and ζn. Show that 1/3 ̸∈ Z[ζn].

Solution. There are multiple ways to show this. Note that if 1/3 ∈ Z[ζn], we’d have Z[1/3] ⊂
Z[ζn] as well. But there is a fundamental difference between Z[ζn] and Z[1/3]. The latter is a
finite free Z-module while the former is neither finite nor free. As Z is a PID and submodules
of finite free modules over a PID are finite and free, we have a contradiction. This implies other
differences between the two rings. For example, 1/3 ∈ Z[1/3] is not integral over Z, while every
element of Z[ζn] is.

Exercise 2

Here, ζ3 is as in Exercise 1. For f ∈ N we define

Af =
{

a + fb

√
−3 + 1

2 | a, b ∈ Z
}

.

1. Show that Af ⊂ A1 = Z[ζ3] is a subring of C for all f ∈ N.

2. Let |·| denote the absolute value on C. Show that |ω|2 ∈ Z for all ω ∈ Z[ζ3].

3. Show that the unit group Z[ζ3]× is equal to {ω ∈ Z[ζ3] | |ω| = 1}.

Solution.

1. Note that ζ3 =
√

−3−1
2 (up to choice), and that 1 + ζ3 + ζ2

3 = 0. Also note that Af =
{a + fbζ3 | a, b ∈ Z}. We have

(a + fbζ3)(c + fdζ3) = ac + f(ad + cb)ζ3 − f2bd(1 + ζ3) ∈ Af ,

so Af is a closed under multiplication. We have Af ⊂ Af ′ whenever f ′ | f , and A1 = Z[ζ3]
is a subring of C.

2. Remember that for the absolute value on C we have

|x + iy|2 = (x + iy)(x − iy) = x2 + y2.

for f ∈ N and a, b ∈ Z this gives∣∣∣∣∣a + fb

√
−3 − 1

2

∣∣∣∣∣
2

=
(

a − bf

2

)2
+ 3

(
fb

2

)2
= a2 − abf + (fb)2 ∈ Z.

3. All units have invertible absolute value, hence we can conclude that if ω is a unit, it has
absolute value 1. This shows one implication. But |ω|2 = 1 implies that ωω = 1, hence
ω−1 = ω ∈ Z[ζ3], which shows the reverse implication.
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Exercise 3

An integral domain A is called Euclidean if there exists a function n : A \ {0} → Z≥0 such that
for all a ∈ A and b ∈ B \ {0} there exist q, r ∈ A such that a = bq + r and either r = 0 or
n(r) < n(b).

1. Show that Euclidean domains are principal ideal domains.

2. Show that the ring Z[ζ3] is euclidean.

3. Show that Z[
√

2] is euclidean.

Solution.

1. Let R be a euclidean ring with norm function δ. Let a ⊂ R be an ideal, and let a ∈ a
be an element such that δ(a) is minimal among all elements of a. Now we have a = (a).
Indeed, if f ∈ a is another element, we have f = qa + r with q ∈ A and either δ(r) < δ(a)
or r = 0. As r = f − qa ∈ a and δ(a) is already minimal among elements in a, δ(r) < δ(a)
is not possible. Therefore we find r = 0, hence f = qa ∈ (a).

2.& 3. We show that ν : z 7→ |N(z)| is a euclidean norm function in both cases (where N denotes
the respective norm function). Write OK for the respective rings. Let a, b ∈ OK , b ̸= 0.
We want to show that there are r ∈ OK and q ∈ OK with ν(r) < ν(b) and a = qb + r.
The idea is simple. We try to approximate a

b ∈ K = Frac(OK) by some algebraic integer
q ∈ OK such that

∣∣N(a
b − q)

∣∣ < 1. Once we found such a q, we set r = a − qb ∈ OK and
find

ν(r) = |N(r)| =
∣∣∣∣N(b)N

(
a

b
− q

)∣∣∣∣ < |N(b)| = ν(b),

which finishes the proof.
So we really only need to show that for OK = Z[ζ3] and OK = Z[

√
2], there are such

elements q. In our cases, this is realtively simple. In the case of Z[
√

2] we write a
b = u+v

√
2

and choose x, y ∈ Z such that |x − u| ≤ 1/2 and |y − v| ≤ 1/2. Now∣∣N(a
b − q)

∣∣ ≤
∣∣∣(x − u)2 − 2(y − v)2

∣∣∣ ≤ 3
4 < 1,

and we are done. The case OK = Z[ζ3] works the same way. Here we find∣∣N(a
b − q)

∣∣ =
∣∣∣(x − u)2 + (x − u)(y − v) + (y − v)2

∣∣∣ ≤ 3
4 < 1.

Exercise 4

Let x, y ∈ Z such that y2 − y = x3. Show that (x, y) = (0, 0) or (x, y) = (0, 1).

Solution. As y and y − 1 share no prime factors, the equation y2 − y = y(y − 1) = x3 implies
that both y and y − 1 are cubes. But this implies y ∈ {0, 1}, and it’s easy to see that all
solutions are of the given form.
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