
Solutions to Sheet 2

Exercise 1

Let K = Q(21/3). Compute NK/Q(x) and TrK/Q(x) for

x ∈ {2023, 21/3, 21/3 − 1, (21/3 + 1)2}.

Solution. Note that [K : Q] = 3, as K is generated as a Q-vector space via (1, 21/3, 22/3). For
any x ∈ K, let µx : K → K denote the Q-linear vector space endomorphism of K given by
µx(α) = xα. Now we have NK/Q(x) = det(µx) and TrK/Q(x) = Tr(µx). We will think of K as
Q3, by the basis given above. To calculate trace and norm, simply express µx with respect to
this basis as a matrix, then calculate determinant and trace of the matrix obtained this way. I
will not do this here.

Exercise 2

Let K/F be a finite field extension.

• Show that TrK/F (λx + µy) = λ TrK/F (x) + µ TrK/F (y) for all x, y ∈ K and λ, µ ∈ F .

• Show that NK/F (xy) = NK/F (x) NK/F (y).

Solution. This also follows directly from the description of norm and trace as determinant and
trace of the associated F -linear endomorphism on K. Let for any x ∈ K µx : K → K denote
the corresponding F -linear maps, similar to the notation in the solution of exercise 1. Note that
µ(lµx+mµy) = lµx+mµy for all x, y ∈ K and m, l ∈ F . Knowing this, the first statement becomes
Tr(lµx +mµy) = l Tr(µx)+m Tr(µy), which is known from linear algebra. Similarly we find that
µxy = µxµy, so that the second statement becomes det(µxy) = det(µxµy) = det(µx) det(µy).
This is also known from linear algebra.

Exercise 3

Show that OK = Z[
√

2]1 contains infinitely many units.

Solution. If we knew Dirichlet’s unit theorem, we’d directly find that O×
K

∼= µ(K) × Zr+s−1,
where r is the number of real embeddings of K = Q(

√
2) (which is 2), s is the number of

conjugate complex embeddings (which is 0), and µ(K) is the group of roots of unity of K,
which is Z/2Z. Hence we’d obtain O×

K
∼= Z/2Z × Z.

In our case, a simple calculation shows that O×
K = {x ∈ Z[

√
2] | N(x) = ±1}. Writing

x = a +
√

2b ∈ OK , we have N(x) = a2 − 2b2. Hence the units are in bijection with the
solutions of the Pell equation a2 − 2b2 = ±1, and it suffices to find infinitely many solutions to
a2 −2b2 = 1. We have trivial solutions (a, b) = (±1, 0). But there is also the non-trivial solution

1I write OK instead of Z[
√

2] because Z[
√

2] is the ring of integers of the Galois extension Q(
√

2)/Q, and this
notation requires less typing.
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(a, b) = (3, 2), corresponding to 3 + 2
√

2 ∈ O×
K . Now all powers of this element are units as

well, and it is easy to see that (3 + 2
√

2)k ̸= 1 for all k ̸= 0 by taking real absolute value. Hence
the set {(3 + 2

√
2)k | k ∈ Z} ⊂ O×

K is infinite.

Exercise 4

Let A be an integral domain and let M be a finitely generated torsion-free A-module, i.e.,
am = 0 implies a = 0 or m = 0. Show that there exist r ∈ Z≥0, a ∈ A \ {0} and a submodule
N of M such that N is free of rank r and aM ⊆ N . Deduce that M is free if A is a PID.

Solution. Let (m1, . . . , mn) be a generating tuple for M . We begin with i = 1, a1 = 1 and
N1 = (m1). If N1 = M we are done. Otherwise, either m2 ∈ (m1), in which case a2(m1, m2) ⊆
(m1) =: N2 for some a2 ∈ A, or m2 ̸∈ (m1), in which case we set N2 := N1 + (m2) = (m1, m2),
which is free, and a2 = 1. We continue this procedure to obtain for every 1 ≤ r ≤ n a free
submodule Nr ⊆ M and an integer ar with a1a2 · · · ar(m1, . . . , mr) ⊆ Nr. After terminating,
we set a = a1 · · · an and N = Nn (that’s cursed) to find a(m1, . . . , mn) = aM ⊆ N . As N is a
free module, the first part of the exercise is done.

If A is additionally assumed to be a PID, the statement aM ⊆ N implies that aM is free, as
now submodules of free modules are free. As M ∼= aM (multiplication by a ∈ A is injective
because M is torsion-free and surjective by construction) this implies that M is free as well.
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