Solutions to Sheet 3

Exercise 1
1. Show that O = {2 € Ok | Ng/g = £1}.

2. Suppose that K = Q(y/m) for some negative squarefree integer m. Determine Oj;.

Solution.

1. We know from the lecture that for any x € Ok, the norm Ng g(z) lies in Z. It is easy
to check (for example by defining the norm via the determinant) that the norm induces a
homomorphism of groups N K/Q*: (’)[X( — 7. This shows that units have norm =1.

For the reverse inclusion, there are at least three solutions. One could argue that for x € Ok
with norm +1, p, : O — Ok (given by p;(a) = ax) has determinant +1, hence is invertible
as a Z-module homomorphism. Now the inverse comes from z~! € K, which now has to lie in
Ok (after some argumentation). Alternatively one can use the fact that

Ng/g(z) = Ha(az) =z H o(x) = +£1,
o o#00
where ¢ runs over all inclusions of K into its algebraic closure.
The coolest solution (of the ones I know and in my naive opinion) uses the fact that N q(x) is
the 0-th coefficient of the minimal polynomial of z. The minimal polynomial yields an equation
et ag 2 4 Fartag =2t fag 2T+ Far+1=0,

and we find
T (:Ud_1 +ag_12?¥2 - 4 agx + ar) = Fl.

::FZ’716(9K

2. Note that K/Q is always an imaginary extension, there is an embedding K «— C given
by v/—m + /mi (unique up to complex conjugation). The unique non-trivial element o €
Gal(K/Q) is given by /—m — —/—m. Hence, thinking of K as a subfield of C, the Galois
group acts by complex conjugation, and the norm is given by the square of the complex absolute
value: NK/Q(x) =zo(z) = ]m\Q

In what follows, we’ll always consider K a subfield of C. By part 1, we know that all units have
absolute value 1, hence they lie on the unit circle. Furthermore, we also know that any x € Ok
has Trg/g(7) = 2Rex € Z. These conditions are quite restrictive!

b

Figure 1: The only points that have a chance of lying in O} are {1, +i, £(¢, £(3}.



In fact one quickly verifies that the points {£1,+i, £(s,+(3} are the only points on the unit
circle with real value € %Z. We have seen before that i € Ok if m = —1 and %Z C Og if
m = —3.

Finally, it is not hard to see that two non-isomorphic quadratic number fields have trivial inter-
section after choosing embeddings into C. This follows from the fact that degree-2 extensions
don’t have intermediate extensions, and that Q(y/m) and Q(v/m') are non-isomorphic if m # m/
(they have different discriminant). This finishes the characterization of the units the ring of
integers of Q(y/m) for negative square-free integers m.

i2~7/47, if m=—1
(5(%) =< ¢ =7/62Z, if m= -3
(-1)2 = 7/27, otherwise.

Exercise 2

Let K and L be number fields and let ¢ : K — L be a ring homomorphism. Show that
LP(OK) C OL.

Solution. We know that Op is the integral closure of Z in L. This means Oy, is the subring
of elements in L that arise as roots of polynomials in Z. The same is true for Ok in K. If any
x € Ok is a root of a monic polynomial f,(7) € Z[T]. Then ¢(x) € L is a root of f as well,
as f(o(xz)) = ¢(f(z)) = 0 (remember that any ring morphism is a homomorphism of abelian
groups. In particular, ¢ is the identity on Z and thereby does not change the coefficients of f).

Exercise 3

Let m € Z \ {0,£1} be a squarefree integer. Using Eisenstein’s criterion, one shows that
X3 —m € Q[X] is irreducible (you do not need to check this). Set K = Q[X]/(X? — mQ[X]),
we write 2 for the image of X in K so that z3 = m.

1. Show that Ay /g(1,z,2?) = —3°m?.

2. Let a,b,c € Q. Compute Ng /g(a + bz + cx?).
Solution.

1. Fix a inclusion K < Q of K in the algebraic closure of Q. There are two other inclusions
of K into @, namely those given by morphism sending = (a primitive element of K) to (3x and
(32 (here we also fixed (3 € Q. By Lemma 1.32 in the script we obtain
1 =z x? 2
AK/Q(l,az,xz) =det |1 Gz (3o
1 Gz (3o

The determinant of the matrix is readily computed to 323(¢3 — (3), which has square 92%(—3) =
—33m?2, as desired.



2. Let a = a+bx +cx?. Let B be the basis (1, z,2%) of K as a Q vector space. Then a sends 1
to the vectors (a, b, c), = to the vector (mec, a,b) and z? to the vector (mb, me,a). We find that
as a matrix with respect to B, multiplication by « is given by

a mc mb
b a mc],
c b a

and the determinant of this matrix is (hopefully)
a® +mb® + m?c® — 3mabc.

Exercise 4

To the right, you do not see the flag of Nepal. The ration of its height to its width is equal to
a number a € R such that K := Q(a) = Q(1/59 — 24v/2).

1. Show that [K : Q] =4 and that

(1, /59 — 24v/2,v/2,v/21/59 — 24\&)

is a (Q-basis of K.

2. Show that 8= (—1+ 1/59 — 24v/2/V/2 € Ok.
3. Set F' = Q(v/2). Show that 2(59 — 24v/2)Ox C Or[B].

Solution.

1. First, after squaring twice we find that « is a root of the polynomial
f(X) = X* —118X2 + 2329.

We find that f is irreducibe by seeing that there are no rational roots to f (we only have to
check divisors of 2329), and the approach

f(X) = (aX? +bX +c)(dX* +eX + f)

reveals that there is no factorizationﬂ This shows that (1, a,a?,a?) is a basis for L/Q. Note
that Q(a?) = Q(v/2). This shows that (1, a,/2,v/20a) is a basis too.

2. Note that 82 = 30 — 12v/2 € Ok and that 3 = \@_1(—1 + a) € K. As Ok in integrally
closed in K, this implies that § € Og. Indeed, f € K = Frac(Ok) is a root of the monic
polynomial T2 — 32 € Og|[T).

! Alternatively, ask Wolframalpha or smth idk.



3. As (1,p) is an F-basis for K, the lecture notes reveal the fact that
Ag/r(1,8)0k C OF + BOF C Op[f].

So perhaps calculating the discriminant solves the exercise in an instant. The minimal polyno-
mial of o over F'is given by T? —(59—24+1/2) = 0, which shows that Gal(K/F) is the group of or-
der 2 generated by the F-linear K-automorphism o that sends a to —« (i.e., o(z+ay) = z—ay).

Writing 6 = %, we find that

2
Ag/r(1, 8) = det G Jfﬁ)) = (0(8) — B)? = 2a2.

This is exactly what we needed. The result from the lecture now implies

Or[8] 2 Ag/r(1, B)O0k = 20°Ok = 2(59 — 24v/2) Ok
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