Solutions to Sheet 5

Exercise 1

Let m € Z \ {0,£1} be a squarefree integer. Using Eisenstein’s criterion, one shows that
X3 —m € Q[X] is irreducible. Let K = Q[X]/(X3 — m) and write x for the image of X in K,
so that z* = m. Let z = a+bx + ca®. We know that Ny /q(2) = a® +mb* +m?c* + 3mabe from
(ii) and 30k C Z[z] from (iv).

(v) Using (ii) and (iv), show that O = Z[z] if 31 m and m # £1 mod 9.
Solution.

(v) Let z = a + bx + cx? € Ok. We already know that 3z € Z[z], so the only thing that can
go wrong is that there are (single) 3’s in the denominator’s of a, b or ¢. We also know that
Ng/(32) = 3l Nk o(2) € 27Z. Write o’ = 3a, b' = 3b and ¢’ = 3¢. Now @', ¥/, ¢’ € Z and we
obtain

a’® +mb? 4+ m2® - 3mad't'd =0 (mod 27).

One can check that there are no non-trivial solutions (that is, no solutions without each number
divisible by 3). Below (and in the github repository) is a snippet of python3 code that does
exactly that.

# solutions.py
MOD = 27

# Use a,b,c in place of a’,b’,c’.
def f(a,b,c,m):
return ( a*a*a + m¥xb*b¥b + m¥mkckcxc - 3xmkaxbxc ) I MOD

solutions_found = False
for a in range(MOD):
for b in range(MOD):
for ¢ in range(MOD):
# skip pairs with everything divisible by 3
if a % 3 == 0 and b%3 == 0 and c%3 == 0O:
continue

for m in range(MOD):
# skip pairs with m == +-1 mod 9

# or 3|m.
if (m+1)%9 == 0 or (m-1)%9 == 0 or m%3 == O:
continue

if f(a,b,c,m) == 0:
solutions_found = True
print(f"Solution found! (a,b,c,m) = ({a},{b},{c},{m})™)

if solutions_found == False:
print ("There are no solutions.")

Executing this, we find that there are no solutions.


solutions.py

Alternatively, looking at the equivalence mod 3 gives conditions to a’,b’,¢ (mod 3), and one
can deduce that there are only trivial solutions that way.

Exercise 2

To the right, you do not see the flag of Nepal. The ration of its height to its width is equal to

a number a € R such that K = Q(a) = Q(1/59 — 24/2).

(iv) Using a computer, one finds that
A /g (1,a, V2, \/ia) —210.17.137
Deduce from this together with (iii) that 20k C Op|[f] = Op + BOF.

(v) Let £ = 2+ yB € Ok with x,y € F. We know from (iv) that z,y € 10p = 1Z +
Deduce from Ny, p(§) € OF that 2 —\2xy —y? € Op.

Sl

(vi) Using (iv) and (v), show that O = Op|[3].
Solution.

(iv) There are quite a few symbols flying around, let’s collect them. We have a = 1/59 — 24+/2,

g = O‘—J;, in particular Op[a] C Op[B]. We defined F' = Q(v/2), and we know from the lecture
that Op = Z[v/2]. Part (iii) showed that 20O C Op[3]. We know that
AK/Q(L a, \/5, \/504)01( CZ+aZ+ \/EZ + \/iOéZ = OF + a(’)F C OF[B]

Write M = Z + aZ + V27 + /2aZ. Basically by the results about the interplay of linear
transformations and the discriminant, we find (this is also in the lecture)

Ar/o(l,0,V2,v20) = [Ok : M]PAjg =2'0-17-137.

From this we find [Og : M] | 2% = 32. Let J C Op be the ideal defined by {r € Op | Vz € Ok :
rz € Op|[B]}. Part (iii) and the above show that (32,2a?) C J. Now we just have to calculate:

(32,202%) = (32,2(59 — 24Vv/2)) = (32,4(59 — 24V/2), 2a?)
= (32,459 — 3-32v/2,202) = (4,2(59 — 24V/2)) = (2)
Hence 2 C (J) and we are done.

(v) This is just a matter of calculating Ny /p(x + yB3). First note that K = F(«) is of degree
2, with Galois group generated by the morphism generated by a — —a. We have

0]

olw+yf)=z+yo (°F) =r -yl -v%
and one calculates that

Nigjp(a+y8) = (v = 35)° = 5 =2® = oy + § — 5022

:mZ—ﬂmy—y2—28y2+%y2.
—_————
..EOF GOF

Here we used that y € $(Z + v/2Z), so that y* has at most a four in its denominator.
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(vi) The inclusion Op[5] C Ok is already known. For the reverse inclusion, take any £ = z+yf3
as in (v). Now we know that 22 — 2zy — y? € Op = Z + /2Z. Write 2z = x1 + v/2x5 and
2y = y1 + V2y2. The integrality condition yields two equations modulo 4, as we have

Ny /r(28) = af + 223 — 2(z1y2 + x291) — yi — 25

+ \/§<2x13«“2 — x1Y1 — 222Y2 — 2y1y2> € 4(Z+V217).

One can again ask a computer if this has a non-trivial solution, and the computer will say no:

# solutions2.py

def eql(xl, x2, yil, y2):

return (x1*x1l + 2xx2%x2 - 2x(xl*y2 + x2xyl) - ylxyl - 2xy2xy2) % 4
def eq2(x1, x2, y1, y2):

return (2*(x1*x2 - ylxy2) - xl*yl - 2%x2%y2) % 4

solutions_found = False
for x1 in range(4):
for x2 in range(4):
for yl1 in range(4):
for y2 in range(4):
if x1%2 == 0 and x2%2 == 0 and y1%2 == 0 and y2%2 == O:
continue
if eql(x1,x2,y1,y2) == 0 and eq2(x1,x2,yl,y2) == 0O:
solutions_found = True
print (£"Solution found! (x1,x2,y1,y2) = ({x1},{x2},{y1},{y2H)"

if solutions_found == False:
print("no")

Exercise 3

Find an integral domain R and a non-zero prime ideal ¢ C R such that 8~! = R.

Solution. First remember what the inverse ideal was. If I C R is any ideal, then I~ = {r €
Frac(R) | Vx € I : rz € R}. From here we can directly see that 8 cannot be a principal Ideal;
if B = (p) for some p € R, P! would simply be given by P! = p~'R # R. Similarly, it was
part of the lecture that for any prime % of a Dedekind domain R, P! D RE| So let’s consider
the simplest non-principal ideal we know: The ideal (x,y) C k[z,y] for some field k. It is prime
(even maximal, why?EI), and we find that

(z,y)" = {r € k(z,y) | re € klz,y) Ary € k[z,y]} = 27 kla,y) Ny~ ke, y] = klz,y)-
Thus, we have found an example.

Exercise 4

Let I denote the ideal (2,1 + /—3) of the ring Z[/—3].

!Thanks to Prof. Dill for pointing this out!
*Because k[z,y]/(z,y) = k is a field.



1. Show that I # (2).

2. Show that 1?2 = 21I.

Z[y/—3] is not a Dedekind domain.
Solution.
1. There are many ways to solve this, but let’s look at residual rings, that is, calculate Z[v/—3] /1.
We have Z[v/—3] = Z[X]/(X? — 3), hence
Z[V=3]/T 2 Z[X]/(X? —3,2,1 + X) = (2/2Z)[X]/(X* -1, X +1) = (Z/27).
Meanwhile, we have
ZIV=3)/(2) = (2/22)[X]/(X? —1) = (2/22)[X)/(1 - X)? = (2,/22)*2.

Here, the last ismorphism is to be taken as an isomorphism of modules. In particular, we find
I # (2), as the corresponding residue rings are not isomorphic.

2. We have 12 = (4,2+42y/—3, —2+21/=3), which can be seen simply by multiplying generators.
But the last generator is the difference between the first two, so we find

I? = (4,24 2V/-3,-2+2V-3) = (4,2 + 2/—-3) = 2I.

Note that this in particular implies that factorization of an ideal into prime factors is not unique:
I is prime, and one factorization is given by I? = I - I. But we have I - I = (2)-I, and (2) # I.
Note however that uniqueness is not the only thing that fails, the ideal (2) doesn’t even have a
decomposition into prime ideals.
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