
Solutions to Sheet 5

Exercise 1

Let m ∈ Z \ {0, ±1} be a squarefree integer. Using Eisenstein’s criterion, one shows that
X3 − m ∈ Q[X] is irreducible. Let K = Q[X]/(X3 − m) and write x for the image of X in K,
so that x3 = m. Let z = a + bx + cx2. We know that NK/Q(z) = a3 + mb3 + m2c3 + 3mabc from
(ii) and 3OK ⊂ Z[x] from (iv).

(v) Using (ii) and (iv), show that OK = Z[x] if 3 ∤ m and m ̸≡ ±1 mod 9.

Solution.

(v) Let z = a + bx + cx2 ∈ OK . We already know that 3z ∈ Z[x], so the only thing that can
go wrong is that there are (single) 3’s in the denominator’s of a, b or c. We also know that
NK/Q(3z) = 3[K:Q] NK/Q(z) ∈ 27Z. Write a′ = 3a, b′ = 3b and c′ = 3c. Now a′, b′, c′ ∈ Z and we
obtain

a′3 + mb′3 + m2c′3 − 3ma′b′c′ ≡ 0 (mod 27).

One can check that there are no non-trivial solutions (that is, no solutions without each number
divisible by 3). Below (and in the github repository) is a snippet of python3 code that does
exactly that.

# solutions.py

MOD = 27

# Use a,b,c in place of a’,b’,c’.
def f(a,b,c,m):

return ( a*a*a + m*b*b*b + m*m*c*c*c - 3*m*a*b*c ) % MOD

solutions_found = False
for a in range(MOD):

for b in range(MOD):
for c in range(MOD):

# skip pairs with everything divisible by 3
if a % 3 == 0 and b%3 == 0 and c%3 == 0:

continue

for m in range(MOD):
# skip pairs with m == +-1 mod 9
# or 3|m.
if (m+1)%9 == 0 or (m-1)%9 == 0 or m%3 == 0:

continue

if f(a,b,c,m) == 0:
solutions_found = True
print(f"Solution found! (a,b,c,m) = ({a},{b},{c},{m})")

if solutions_found == False:
print("There are no solutions.")

Executing this, we find that there are no solutions.
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Alternatively, looking at the equivalence mod 3 gives conditions to a′, b′, c′ (mod 3), and one
can deduce that there are only trivial solutions that way.

Exercise 2

To the right, you do not see the flag of Nepal. The ration of its height to its width is equal to
a number α ∈ R such that K := Q(α) = Q(

√
59 − 24

√
2).

(iv) Using a computer, one finds that

∆K/Q

(
1, α,

√
2,

√
2α

)
= 210 · 17 · 137

Deduce from this together with (iii) that 2OK ⊂ OF [β] = OF + βOF .

(v) Let ξ = x + yβ ∈ OK with x, y ∈ F . We know from (iv) that x, y ∈ 1
2OF = 1

2Z + 1√
2Z.

Deduce from NK/F (ξ) ∈ OF that x2 −
√

2xy − y2 ∈ OF .

(vi) Using (iv) and (v), show that OK = OF [β].

Solution.

(iv) There are quite a few symbols flying around, let’s collect them. We have α =
√

59 − 24
√

2,
β = α−1√

2 , in particular OF [α] ⊂ OF [β]. We defined F = Q(
√

2), and we know from the lecture
that OF = Z[

√
2]. Part (iii) showed that 2α2OK ⊂ OF [β]. We know that

∆K/Q(1, α,
√

2,
√

2α)OK ⊂ Z + αZ +
√

2Z +
√

2αZ = OF + αOF ⊂ OF [β].

Write M := Z + αZ +
√

2Z +
√

2αZ. Basically by the results about the interplay of linear
transformations and the discriminant, we find (this is also in the lecture)

∆K/Q(1, α,
√

2,
√

2α) = [OK : M ]2∆K/Q = 210 · 17 · 137.

From this we find [OK : M ] | 25 = 32. Let J ⊂ OF be the ideal defined by {r ∈ OF | ∀x ∈ OK :
rx ∈ OF [β]}. Part (iii) and the above show that (32, 2α2) ⊂ J . Now we just have to calculate:

(32, 2α2) = (32, 2(59 − 24
√

2)) = (32, 4(59 − 24
√

2), 2α2)
= (32, 4 · 59 − 3 · 32

√
2, 2α2) = (4, 2(59 − 24

√
2)) = (2)

Hence 2 ⊂ (J) and we are done.

(v) This is just a matter of calculating NK/F (x + yβ). First note that K = F (α) is of degree
2, with Galois group generated by the morphism generated by α 7→ −α. We have

σ(x + yβ) = x + yσ
(

α−1
2

)
= x − y 1√

2 − y α√
2

and one calculates that

NK/F (x + yβ) = (x − y√
2)2 − α2y2

2 = x2 −
√

2xy + y2

2 − (59−24
√

2)
2 y2

= x2 −
√

2xy − y2︸ ︷︷ ︸
∴∈OF

− 28y2 + 24√
2y2︸ ︷︷ ︸

∈OF

.

Here we used that y ∈ 1
2(Z +

√
2Z), so that y2 has at most a four in its denominator.
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(vi) The inclusion OF [β] ⊂ OK is already known. For the reverse inclusion, take any ξ = x+yβ
as in (v). Now we know that x2 −

√
2xy − y2 ∈ OF = Z +

√
2Z. Write 2x = x1 +

√
2x2 and

2y = y1 +
√

2y2. The integrality condition yields two equations modulo 4, as we have

NK/F (2ξ) = x2
1 + 2x2

2 − 2(x1y2 + x2y1) − y2
1 − 2y2

2

+
√

2
(

2x1x2 − x1y1 − 2x2y2 − 2y1y2

)
∈ 4(Z +

√
2Z).

One can again ask a computer if this has a non-trivial solution, and the computer will say no:

# solutions2.py

def eq1(x1, x2, y1, y2):
return (x1*x1 + 2*x2*x2 - 2*(x1*y2 + x2*y1) - y1*y1 - 2*y2*y2) % 4

def eq2(x1, x2, y1, y2):
return (2*(x1*x2 - y1*y2) - x1*y1 - 2*x2*y2) % 4

solutions_found = False
for x1 in range(4):

for x2 in range(4):
for y1 in range(4):

for y2 in range(4):
if x1%2 == 0 and x2%2 == 0 and y1%2 == 0 and y2%2 == 0:

continue
if eq1(x1,x2,y1,y2) == 0 and eq2(x1,x2,y1,y2) == 0:

solutions_found = True
print(f"Solution found! (x1,x2,y1,y2) = ({x1},{x2},{y1},{y2})")

if solutions_found == False:
print("no")

Exercise 3

Find an integral domain R and a non-zero prime ideal P ⊂ R such that P−1 = R.

Solution. First remember what the inverse ideal was. If I ⊂ R is any ideal, then I−1 = {r ∈
Frac(R) | ∀x ∈ I : rx ∈ R}. From here we can directly see that P cannot be a principal Ideal;
if P = (p) for some p ∈ R, P−1 would simply be given by P−1 = p−1R ̸= R. Similarly, it was
part of the lecture that for any prime P of a Dedekind domain R, P−1 ⊋ R.1 So let’s consider
the simplest non-principal ideal we know: The ideal (x, y) ⊂ k[x, y] for some field k. It is prime
(even maximal, why?2), and we find that

(x, y)−1 = {r ∈ k(x, y) | rx ∈ k[x, y] ∧ ry ∈ k[x, y]} = x−1k[x, y] ∩ y−1k[x, y] = k[x, y].

Thus, we have found an example.

Exercise 4

Let I denote the ideal (2, 1 +
√

−3) of the ring Z[
√

−3].
1Thanks to Prof. Dill for pointing this out!
2Because k[x, y]/(x, y) ∼= k is a field.
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1. Show that I ̸= (2).

2. Show that I2 = 2I.

Z[
√

−3] is not a Dedekind domain.

Solution.

1. There are many ways to solve this, but let’s look at residual rings, that is, calculate Z[
√

−3]/I.
We have Z[

√
−3] ∼= Z[X]/(X2 − 3), hence

Z[
√

−3]/I ∼= Z[X]/(X2 − 3, 2, 1 + X) ∼= (Z/2Z)[X]/(X2 − 1, X + 1) ∼= (Z/2Z).

Meanwhile, we have

Z[
√

−3]/(2) ∼= (Z/2Z)[X]/(X2 − 1) ∼= (Z/2Z)[X]/(1 − X)2 ∼= (Z/2Z)⊕2.

Here, the last ismorphism is to be taken as an isomorphism of modules. In particular, we find
I ̸= (2), as the corresponding residue rings are not isomorphic.

2. We have I2 = (4, 2+2
√

−3, −2+2
√

−3), which can be seen simply by multiplying generators.
But the last generator is the difference between the first two, so we find

I2 = (4, 2 + 2
√

−3, −2 + 2
√

−3) = (4, 2 + 2
√

−3) = 2I.

Note that this in particular implies that factorization of an ideal into prime factors is not unique:
I is prime, and one factorization is given by I2 = I · I. But we have I · I = (2) · I, and (2) ̸= I.
Note however that uniqueness is not the only thing that fails, the ideal (2) doesn’t even have a
decomposition into prime ideals.
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