Solutions to Sheet 6

Exercise 1

Let K be a number field. Show that Ok has infinitely many prime ideals.

Solution. There are many ideas one could use. For example, the statement is a direct conse-
quence of the lying over theorem for integral extensions. But we proof this mimicking Euclid’s
proof. Assume there is only a finite number of primes p1,...,p,. Let n € Z be an integer such
that nZ = p1---p, NZ. Now (n + 1)Of is a proper ideal not contained in any of the ideals
P1,-..,Pn. In particular, the decomposition statement of Ideals into prime ideals cannot hold.
This is a contradiction, as O is a Dedekind domain.

Exercise 2

Let m € Z be negative and squarefree with m = 1 mod 4 and set K = Q(y/m). We assume
that Ok is a UFD (this is used in parts (ii) and (iv)).

1. Let p be a prime number and k € Z such that p | k? — k + I_Tm. Show that p is not a
prime element in Og.

2. Let p be as in (7). Show that there exists u,v in Of such that p = uv and N g(u) = p.

3. Let p be a prime number of the form Ny q(u) for some u € Og. Show that p > (1—-m)/4.

4. Suppose that m < —3. Deduce that every number of the form k? — k + 1_Tm with 0 <k <

—3—m .
1 1S prime.

Solution.

1. Let a = (Hﬁ). Then we can factor k% — k+ 25 = (k — a)(k — o(a)), where o is complex

conjugation (in particular, k? — k + 1_Tm = Ng/g(k — ). We know that (1, a) is a Z-basis for
Ok, and wee see that k — o,k — o(a) € pOg. Hence pOk is not a prime ideal, and p is not
prime.

2. We make use of the fact that Ok is a UFD. Let p = ¢1 ... ¢ be a decomposition of p into
(possibly repeating) irreducible factors (without units). Then p* = Ng/g(p) = Ng/glq) - -
Ngk/o(gr), and we find that r < 2. As O is a UFD, p is not irreducible (prime = irreducible
in UFDs). This shows that » > 2, so we have equality, and we get two elements ¢1, g2 with

Ng/olq1) = Ngjgla2) = p.
3. Write u = a + ba. Then

b 2
Ng/g(u) <a—|—2> TmZ

Here we used that necessarily b # 0 if this is suppsed to be prime. Also, note that both terms
are non-negative.



4. Suppose p; and po are prime numbers that divide k? — k + kTm. By 2. there are up,us in
m

Ok such that NK/Q(ui) = p;. In particular we find by 3. that p > I_T. Now as m < —3, we

find that
1-m

2
m 2
pip2 > [ —— | < —k+—.
12<4>k K 4

The last inequality rewrites as

<1—4m> <1—4m1> < kh-1),

which is only possible if k£ > 1_Tm or k <O0.

Remark. The last statement implies the funny result that k% — k441 is a prime for all integers
0<k<4l,as OQ(\/TGS) is known to be a UFD.

Exercise 3

Let K be a number field. Let I and J be ideals of Or and let ¢ : K — K be a field
automorphism. Recall that o(Ok) C Ok.

1. Show that o(I) is an ideal of Ok.
2. Show that o([) is prime if I is prime.
3. Show that o(IJ) = o(I)o(J).

Solution.

1. For x € I, r € Ok we have
ro(z) = o(o ! (r)x) € o(I).
Hence o(I) is an ideal.

2. Same trick: If I is prime and zy € o(I), then o~!(z)o~'(y) € I, so by primality of I and
without loss of generality o~ (x) € I. But now z € o(I), so o(I) is prime.

3. o(lJ)={o(z)o(y) |z e l,ye J}t=0(l)o(J).
Exercise 4

Let R be a Dedekind domain.
1. Let I and Iy,..., I, be ideals such that I; { I for all j =1,...,n. Show that
I\(LU---UIL,) #0.

2. Suppose that R has at most finitely many prime ideals. Show that R is a principal ideal
domain.



Solution. The following lemma will prove useful (and is really just a weak form of 4.1):

Lemma 1. Let R be a Dedekind domain and let py, ..., p, prime ideals of R. Letey...,e, € Z
be arbitrary integers. Then there is some r € R with r € pjj \p;H1 for all j.

Proof. We’ll make use of the Chinese remainder theorem. We have the map

R R/(pi n.pir ) =TT R/
J

Now choose non-zero elements s; € p;j / p;j 1 R/ p;j i Any element r in the preimage of

(317 c '7371) € HR/pjjJrl
J

works. O

1. We are in the Dedekind situation, so of course we look at the prime factorization of the
Ideals at hand. Let I = p{'...pSm. Also, by the divisibility assumption, for any j there is

some prime ideal q; and some integer f; such that q;-cj | I, qjj+1 ¥ I and qj-cjﬂ | I;. Now,
there is some element r € R with r € p;* for all ¢ (ie., r € I) and r € qjj \qjjJrl (i.e.,

T ¢ Ij)

2. As R is a Dedekind domain, it suffices to show that all prime ideals are principal. By
assumption there are only finitely many, let’s call them pq,...,p,. We now use lemma 1
to find an element x € R with x ¢ p; for j # 1 and x € py \ p?. This forces (z) = p;.



