
Solutions to Sheet 6

Exercise 1

Let K be a number field. Show that OK has infinitely many prime ideals.

Solution. There are many ideas one could use. For example, the statement is a direct conse-
quence of the lying over theorem for integral extensions. But we proof this mimicking Euclid’s
proof. Assume there is only a finite number of primes p1, . . . , pn. Let n ∈ Z be an integer such
that nZ = p1 · · · pn ∩ Z. Now (n + 1)OK is a proper ideal not contained in any of the ideals
p1, . . . , pn. In particular, the decomposition statement of Ideals into prime ideals cannot hold.
This is a contradiction, as OK is a Dedekind domain.

Exercise 2

Let m ∈ Z be negative and squarefree with m ≡ 1 mod 4 and set K = Q(
√

m). We assume
that OK is a UFD (this is used in parts (ii) and (iv)).

1. Let p be a prime number and k ∈ Z such that p | k2 − k + 1−m
4 . Show that p is not a

prime element in OK .

2. Let p be as in (i). Show that there exists u, v in OK such that p ≡ uv and NK/Q(u) = p.

3. Let p be a prime number of the form NK/Q(u) for some u ∈ OK . Show that p ≥ (1−m)/4.

4. Suppose that m < −3. Deduce that every number of the form k2 − k + 1−m
4 with 0 ≤ k ≤

−3−m
4 is prime.

Solution.

1. Let α =
(

1+
√

m
2

)
. Then we can factor k2 − k + 1−m

4 = (k − α)(k − σ(α)), where σ is complex
conjugation (in particular, k2 − k + 1−m

4 = NK/Q(k − α)). We know that (1, α) is a Z-basis for
OK , and wee see that k − α, k − σ(α) ̸∈ pOK . Hence pOK is not a prime ideal, and p is not
prime.

2. We make use of the fact that OK is a UFD. Let p = q1 . . . qr be a decomposition of p into
(possibly repeating) irreducible factors (without units). Then p2 = NK/Q(p) = NK/Q(q1) · · ·
NK/Q(qr), and we find that r ≤ 2. As OK is a UFD, p is not irreducible (prime = irreducible
in UFDs). This shows that r ≥ 2, so we have equality, and we get two elements q1, q2 with
NK/Q(q1) = NK/Q(q2) = p.

3. Write u = a + bα. Then

NK/Q(u) =
(

a + b

2

)2
− b2

4 m ≥ 1 − m

4 .

Here we used that necessarily b ̸= 0 if this is suppsed to be prime. Also, note that both terms
are non-negative.
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4. Suppose p1 and p2 are prime numbers that divide k2 − k + 1−m
4 . By 2. there are u1, u2 in

OK such that NK/Q(ui) = pi. In particular we find by 3. that p ≥ 1−m
4 . Now as m < −3, we

find that
p1p2 ≥

(1 − m

4

)2
≤ k2 − k + 1 − m

4 .

The last inequality rewrites as(1 − m

4

) (1 − m

4 − 1
)

≤ k(k − 1),

which is only possible if k ≥ 1−m
4 or k < 0.

Remark. The last statement implies the funny result that k2 −k +41 is a prime for all integers
0 ≤ k < 41, as OQ(

√
−163) is known to be a UFD.

Exercise 3

Let K be a number field. Let I and J be ideals of OK and let σ : K → K be a field
automorphism. Recall that σ(OK) ⊂ OK .

1. Show that σ(I) is an ideal of OK .

2. Show that σ(I) is prime if I is prime.

3. Show that σ(IJ) = σ(I)σ(J).

Solution.

1. For x ∈ I, r ∈ OK we have

rσ(x) = σ(σ−1(r)x) ∈ σ(I).

Hence σ(I) is an ideal.

2. Same trick: If I is prime and xy ∈ σ(I), then σ−1(x)σ−1(y) ∈ I, so by primality of I and
without loss of generality σ−1(x) ∈ I. But now x ∈ σ(I), so σ(I) is prime.

3. σ(IJ) = {σ(x)σ(y) | x ∈ I, y ∈ J} = σ(I)σ(J).

Exercise 4

Let R be a Dedekind domain.

1. Let I and I1, . . . , In be ideals such that Ij ∤ I for all j = 1, . . . , n. Show that

I \ (I1 ∪ · · · ∪ In) ̸= ∅.

2. Suppose that R has at most finitely many prime ideals. Show that R is a principal ideal
domain.
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Solution. The following lemma will prove useful (and is really just a weak form of 4.1):

Lemma 1. Let R be a Dedekind domain and let p1, . . . , pn prime ideals of R. Let e1 . . . , en ∈ Z
be arbitrary integers. Then there is some r ∈ R with r ∈ p

ej

j \ p
ej+1
j for all j.

Proof. We’ll make use of the Chinese remainder theorem. We have the map

R → R/(pe1+1
1 ∩ . . . pen+1

n ) ∼=
∏
j

R/p
ej+1
j .

Now choose non-zero elements sj ∈ p
ej

j /p
ej+1
j ⊂ R/p

ej+1
j . Any element r in the preimage of

(s1, . . . , sn) ∈
∏
j

R/p
ej+1
j

works.

1. We are in the Dedekind situation, so of course we look at the prime factorization of the
Ideals at hand. Let I = pe1

1 . . . pem
m . Also, by the divisibility assumption, for any j there is

some prime ideal qj and some integer fj such that q
fj

j | I, qfj+1
j ∤ I and q

fj+1
j | Ij . Now,

there is some element r ∈ R with r ∈ pei
i for all i (i.e., r ∈ I) and r ∈ q

ej

j \ q
ej+1
j (i.e.,

r ̸∈ Ij).

2. As R is a Dedekind domain, it suffices to show that all prime ideals are principal. By
assumption there are only finitely many, let’s call them p1, . . . , pn. We now use lemma 1
to find an element x ∈ R with x ̸∈ pj for j ̸= 1 and x ∈ p1 \ p2

1. This forces (x) = p1.
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