Solutions to Sheet 7

Exercise 1
1. Let K be a number field and let n € N. Show that
an(K) = #{I C Ok | I is an ideal such that N(I) = n}

is finite.

2. Let K = Q(v/—3). Use Theorem 3.11 to determine a, (K) for all n € {1,...,7}, where we
use the notation from 1.

Solution.

1. Let I C Ok be any ideal. We can write I = B7" ... B¢ and obtain

N(I) = N(B1)“ -+ N(B,)*.

Note that p | N() if and only if P | pOg. Indeed, if p | N(B) = [Ox : B, then multiplication
with p* induces the zero-endomorphism on O /B, hence p* € P, implying p € R, i.e., P | pOr.
On the other hand, if P divides pOf, then N(P) divides N(pOg) = plEU and as N(P) # 1
we find p | N(B). But in Ok we have a finite decomposition pOx = PB7* - - - P&, This implies
that there are only finitely many prime ideals in Ok with norm divisible by p. But a fortiori
there now are only finitely many ideals I with norm n.

2. Note that O = Z[5] with g = 71%\/?3, which has minimal polynomial A(T) = T? + T + 1.
This implies that [Og : Z[5]] = 1 € (p) for any prime ideal (p) of Z, so we can apply 3.11
without hesitation. The unit ideal is the only one with norm 1. To determine the other a, (K),
we first determine the number of prime ideals that have a chance of dividing (n). Here we use
3.11. We need factorizations into irreducible factors of 72 + T + 1 modulo 2,3,5,7. These are
given by

e T?+T+1=T?+T+1 (mod 2)

e T2+ T+1=(T—1)% (mod 3)

e T2+ T+1=T?>+T+1 (mod 5)

e T?4+T+1=(T—-2)(T—-5) (mod 7).

Theorem 3.11 now states that the we have the following prime ideals above each p:

o Wo =20k + f(B)Ok above (2), its norm is N(Pa) = 22.

e P3 =30k + (B — 1)Ok above (3), its norm is N(PB2) = 3.

e Bs5 =50k + f(B)Ok above (5), its norm is N(Pa) = 52.

o Po =70k + (8 —2)Ok, Py =70k + (8 — 5) above (7). These ideals both have norm 7.

Here we used that if P is a prime above p € Z, we have N(B,) = pl(Blp). By multiplicativity of
the norm, we arrive at

GQ(K) = 0, ag(K) = 1, a4(K) = 1, a5(K) = 0, ag(K) = 0, a7(K) =2.



Exercise 2

Let K = Q(2/?%). We know from previous exercise sheets that [K : Q] = 3 and that O =
Z[Ql/ 3] Use theorem 3.11 to determine the prime ideal factorization of 20,50k and 7Ok.

Solution. We have seen in previous exercises that O = Z[2'/3]. Hence we don’t have do worry
about divisibility constraints when using 3.11. The minimal polynomial of 2'/3 is A(T) = T°—2.
Again we need to find its factors modulo 2,5, 7.

e Mod 2: A(T) =T3 = Ay(T)?
e Mod 5: A(T) = (T = 3)(T? + 3T +4) = A1(T)As(T)
e Mod 7: A(T) =13 —2=A,(T).

Theorem 3.11 now provides us with explicit formulas for the divisors of pOg:

e 20K = 21(21/3)0[( = (21/301{)3
e 50K = (50]{ +Zl(21/3)01()(50[( +ZQ(21/3>0K>
o 10 =70k +A(230OK =70k

Exercise 3

Let P=T3 -T2 - 2T — 8 € Z[X], set K = Q[T]/PQ[T], and let o denote the image of T" in
K. The reduction of P modulo 3 has no zero in F3 = Z/3 and so is irreducible in F3[T]. This
implies that P is irreducible in Q[T (it has no roots, and every factorization contains at least
one linear term, implying a root). Hence, K is a number field of degree 3. One computes that
Akl a,a?) = =22 503,

1. Prove that 4a~! € Ok and Z + oZ + 4a™1Z 2 Z|a].
2. Deduce that (1, a,4a7 1) is a Z-basis of Ok.

3. Let § € Ok be a primitive element of K/Q, i.e., K = Q(3), and let A = (a;;)1<i j<3 such
that 4
gt = a;1 +a;2a+a;3— forallie{1,2 3}
a

Show that 2 | det A and deduce that 2 | [Ok : Z[5]].
Solution.

1. We have 4a~! € K, so it suffices to find algebraic relations for 4a~!. Note that P(a) = 0,
so that

(4a1)? =16a2 =2(a® - o® —20)a 2 =200 — 2 — 4a L.
In particular, (4a~1)? +4a~! — 2a: + 2 = 0, which is the algebraic relation we are looking for
(now 4a~! is a root of the monic polynomial 72 + T — 2(a — 1) € Ok|[T)).

For the second part, use that 4o~ lies in the left hand side, but not the right hand side (express
it with (1, a, @?) as a Q-linear combination to see this).



2. We calculate the discriminant of (1,,4a™") and compare it with Ag /g = —22-503. Denote
by M the module given by Z + aZ + 4a~'Z C Ok. We have that

AK/@(l,a,az) =[M: Z[oz]]QAK/Q(l,a,éLa_l).

Using the given fact that A /q(1, o, ) = —2% - 503, we find that [M : Z[o]] | 2. Part 1 shows
that [M : Z[a]] # 1, so we have [M : Z[a]] = 2 and Ag (1, a,4a7!) = —503. The same idea
reveals that

AK/Q(l,Oé,ZlOéil) = [OK : M]2AK/Q’

but as Ag/g # 1 this is only possible if [Ok : M| =1, i.e., O = M. This is what we had to

show.

3. We are only interested in residues mod 2, so it suffices to work out the entries of A mod 2.
But to figure out the coefficients of A mod 2 is the same as working out the coordinates of the
residue class of § in Ok /20k (which is a 3-dimensional Fa-vector space) with respect to the
basis given by the residue classes of (1, a,4a~!). Suppose that we have

B =a+ba+cda™).

Then
B* = (a+ba+c(da ) =a*+bv?a* +F(da™h)?  (mod 2).

Note that we have

3 2 2 8
Q2= T HHS 42U =a (mod 2)
(6

and
(4a™1)? = =24+ 20 — 4o~ =407t (mod 2).

Hence we find that
B2 =a®+b2a+cA4at) (mod 2),

100
and this yields that mod 2, A is given by the matrix ( a b c ), which has determinant

a? b? ¢

[§]

det (bb2 CC2> =bc2 —ch’* =0 (mod 2).

Now we can use that
Ok : Z[B]] = |det(A)]

implying that 2 | [Ok : Z[5]].

Remark. In particular, part 3 shows that there is no such thing as an integral theorem of the
primitive element: There is no primitive element 8 € K such that Z[5] = Ok. Number fields
that satisfy this condition are called monogenic. According to Wikipedia, the example covered
in this exercise was the first known example of a non-monogenic number field, discovered by
RICHARD DEDEKIND.
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