
Solutions to Sheet 7

Exercise 1

1. Let K be a number field and let n ∈ N. Show that

an(K) = #{I ⊂ OK | I is an ideal such that N(I) = n}

is finite.

2. Let K = Q(
√

−3). Use Theorem 3.11 to determine an(K) for all n ∈ {1, . . . , 7}, where we
use the notation from 1.

Solution.

1. Let I ⊂ OK be any ideal. We can write I = Pe1
1 . . .Pes

s and obtain

N(I) = N(P1)e1 · · · N(Ps)es .

Note that p | N(P) if and only if P | pOK . Indeed, if p | N(P) = [OK : P], then multiplication
with pk induces the zero-endomorphism on OK/P, hence pk ∈ P, implying p ∈ P, i.e., P | pOK .
On the other hand, if P divides pOK , then N(P) divides N(pOK) = p[K:Q], and as N(P) ̸= 1
we find p | N(P). But in OK we have a finite decomposition pOK = Pe1

1 · · ·Pen
n . This implies

that there are only finitely many prime ideals in OK with norm divisible by p. But a fortiori
there now are only finitely many ideals I with norm n.

2. Note that OK = Z[β] with β = −1+
√

−3
2 , which has minimal polynomial A(T ) = T 2 + T + 1.

This implies that [OK : Z[β]] = 1 ̸∈ (p) for any prime ideal (p) of Z, so we can apply 3.11
without hesitation. The unit ideal is the only one with norm 1. To determine the other an(K),
we first determine the number of prime ideals that have a chance of dividing (n). Here we use
3.11. We need factorizations into irreducible factors of T 2 + T + 1 modulo 2, 3, 5, 7. These are
given by

• T 2 + T + 1 ≡ T 2 + T + 1 (mod 2)
• T 2 + T + 1 ≡ (T − 1)2 (mod 3)
• T 2 + T + 1 ≡ T 2 + T + 1 (mod 5)
• T 2 + T + 1 ≡ (T − 2)(T − 5) (mod 7).

Theorem 3.11 now states that the we have the following prime ideals above each p:

• P2 = 2OK + f(β)OK above (2), its norm is N(P2) = 22.
• P3 = 3OK + (β − 1)OK above (3), its norm is N(P2) = 3.
• P5 = 5OK + f(β)OK above (5), its norm is N(P2) = 52.
• P2 = 7OK + (β − 2)OK , P′

2 = 7OK + (β − 5) above (7). These ideals both have norm 7.

Here we used that if P is a prime above p ∈ Z, we have N(Pp) = pf(P|p). By multiplicativity of
the norm, we arrive at

a2(K) = 0, a3(K) = 1, a4(K) = 1, a5(K) = 0, a6(K) = 0, a7(K) = 2.
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Exercise 2

Let K = Q(21/3). We know from previous exercise sheets that [K : Q] = 3 and that OK =
Z[21/3]. Use theorem 3.11 to determine the prime ideal factorization of 2OK , 5OK and 7OK .

Solution. We have seen in previous exercises that OK = Z[21/3]. Hence we don’t have do worry
about divisibility constraints when using 3.11. The minimal polynomial of 21/3 is A(T ) = T 3−2.
Again we need to find its factors modulo 2, 5, 7.

• Mod 2: A(T ) = T 3 = A1(T )3

• Mod 5: A(T ) = (T − 3)(T 2 + 3T + 4) = A1(T )A2(T )

• Mod 7: A(T ) = T 3 − 2 = A1(T ).

Theorem 3.11 now provides us with explicit formulas for the divisors of pOK :

• 2OK = A1(21/3)OK = (21/3OK)3

• 5OK = (5OK + A1(21/3)OK)(5OK + A2(21/3)OK)

• 7OK = 7OK + A1(21/3)OK = 7OK

Exercise 3

Let P = T 3 − T 2 − 2T − 8 ∈ Z[X], set K = Q[T ]/PQ[T ], and let α denote the image of T in
K. The reduction of P modulo 3 has no zero in F3 = Z/3 and so is irreducible in F3[T ]. This
implies that P is irreducible in Q[T ] (it has no roots, and every factorization contains at least
one linear term, implying a root). Hence, K is a number field of degree 3. One computes that
∆K/Q(1, α, α2) = −22 · 503.

1. Prove that 4α−1 ∈ OK and Z + αZ + 4α−1Z ⊋ Z[α].

2. Deduce that (1, α, 4α−1) is a Z-basis of OK .

3. Let β ∈ OK be a primitive element of K/Q, i.e., K = Q(β), and let A = (aij)1≤i,j≤3 such
that

βi−1 = ai,1 + ai,2α + ai,3
4
α

for all i ∈ {1, 2, 3}.

Show that 2 | det A and deduce that 2 | [OK : Z[β]].

Solution.

1. We have 4α−1 ∈ K, so it suffices to find algebraic relations for 4α−1. Note that P (α) = 0,
so that

(4α−1)2 = 16α−2 = 2(α3 − α2 − 2α)α−2 = 2α − 2 − 4α−1.

In particular, (4α−1)2 + 4α−1 − 2α + 2 = 0, which is the algebraic relation we are looking for
(now 4α−1 is a root of the monic polynomial T 2 + T − 2(α − 1) ∈ OK [T ]).
For the second part, use that 4α−1 lies in the left hand side, but not the right hand side (express
it with (1, α, α2) as a Q-linear combination to see this).
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2. We calculate the discriminant of (1, α, 4α−1) and compare it with ∆K/Q = −22 · 503. Denote
by M the module given by Z + αZ + 4α−1Z ⊂ OK . We have that

∆K/Q(1, α, α2) = [M : Z[α]]2∆K/Q(1, α, 4α−1).

Using the given fact that ∆K/Q(1, α, α2) = −22 · 503, we find that [M : Z[α]] | 2. Part 1 shows
that [M : Z[α]] ̸= 1, so we have [M : Z[α]] = 2 and ∆K/Q(1, α, 4α−1) = −503. The same idea
reveals that

∆K/Q(1, α, 4α−1) = [OK : M ]2∆K/Q,

but as ∆K/Q ̸= 1 this is only possible if [OK : M ] = 1, i.e., OK = M . This is what we had to
show.

3. We are only interested in residues mod 2, so it suffices to work out the entries of A mod 2.
But to figure out the coefficients of A mod 2 is the same as working out the coordinates of the
residue class of β in OK/2OK (which is a 3-dimensional F2-vector space) with respect to the
basis given by the residue classes of (1, α, 4α−1). Suppose that we have

β = a + bα + c(4α−1).

Then
β2 = (a + bα + c(4α−1))2 ≡ a2 + b2α2 + c2(4α−1)2 (mod 2).

Note that we have

α2 = α3

α
= α2 + 2α + 8

α
= 2 + α + 2(4α−1) ≡ α (mod 2)

and
(4α−1)2 = −2 + 2α − 4α−1 ≡ 4α−1 (mod 2).

Hence we find that
β2 ≡ a2 + b2α + c2(4α−1) (mod 2),

and this yields that mod 2, A is given by the matrix
(

1 0 0
a b c
a2 b2 c2

)
, which has determinant

det
(

b c
b2 c2

)
= bc2 − cb2 ≡ 0 (mod 2).

Now we can use that
[OK : Z[β]] = |det(A)|

implying that 2 | [OK : Z[β]].

Remark. In particular, part 3 shows that there is no such thing as an integral theorem of the
primitive element: There is no primitive element β ∈ K such that Z[β] = OK . Number fields
that satisfy this condition are called monogenic. According to Wikipedia, the example covered
in this exercise was the first known example of a non-monogenic number field, discovered by
Richard Dedekind.
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