
Solutions to Sheet 8

Exercise 1

Let K = Q[
√

7,
√

10]. The extension K/Q is Galois (the extension is normal since K is a
splitting field of the polynomial (T 2 − 7)(T 2 − 10) ∈ Q[T ]).

1. Show that there exist pairwise distinct prime ideals P1, . . .P4 of OK such that 3OK =
P1 · · ·P4. Hint: Consider D(P|3Z) for a prime ideal P of OK lying over 3.

2. Deduce that 3 | [OK : Z[α]] for every α ∈ OK . In particular, OK is not monogenic.

Solution.

1. As in the hint we will show that

D(P|3Z) = {σ ∈ Gal(K/Q) | σ(P) = P} = {1}

for any prime ideal P ⊂ OK dividing (3). This finishes the exercise, as we know from the lecture
that 1 = #D(P|3Z) = e(P|3)f(P|3). Now (the very useful) Lemma 3.10 implies that

4 = [K : Q] =
∑

P|3OK

e(P|3Z)f(P|3Z) =
∑

P|3OK

1.

Hence there are four distinct prime divisors of 3OK .
The Galois group of L/K is given by Z/2Z×Z/2Z, which acts by switching the sign of

√
7 and√

10. Note that (
√

10 + 1)(
√

10 − 1) = 9 ∈ P and (
√

7 + 1)(
√

7 − 1) = 6 ∈ P; in both cases we
find that one of the factors must lie in P. If now σ switched the sign of

√
α for α ∈ {7, 10}, we’d

find that (
√

α ± 1) + σ(
√

α ± 1) = ±2 ∈ P. But we have 3 ∈ P, so now we find 3 − 2 = 1 ∈ P,
Contradiction. So there cannot be non-trivial elements in D(P|3).

2. Assume for sake of contradiction that 3 ∤ [OK : Z[α]] but K = Q(α). Let mα(X) be the
minimal polynomial of α. Then theorem 3.11 yields

mα(X) ∼= P1(X)P2(X)P3(X)P4(X)

for four distinct (irreducible) polynomials Pi(X) ∈ F3[X] of degree f(P|3) = 1. But the only
degree 1 polynomials in F3[X] are X, X − 1, X − 2. Contradiction.

Exercise 2

Let K be a number field, let L/K be an algebraic extension, and let L1 and L2 be two subfields
of L containing K such that the extensions L1/K and L2/K are Galois (in particular finite).
Let M denote the compositum L1L2 of L1 and L2 inside L., i.e., the intersection of all subfields
of L that contain L1 ∪ L2. Let p denote a non-zero prime ideal of OK .

1. Show that the extension M/K is Galois.

2. Show with an example that the implication "p is totally ramified in both L1/K and L2/K,
so p is totally ramified in M/K" is false in general.
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3. Show with an example that the implication "p is inert in both L1/K and L2/K, so p is
inert in M/K" is false in general.

Solution. We are in the following situation:

L

L1L2 = M

L1 L2

K

Q

finite

Galois
Galois

1. For us, Galois means separable, finite and normal. Separability follows from the fact that
every extension of fields in characteristic 0 is separable. For normality and finiteness, observe
that L1 and L2 are the splitting fields of (finite) families of polynomials. But now L1L2 is the
splitting field of the union of these families. Hence it is normal and finite.

2. Remember that a prime p ⊂ OK is said to be totally ramified in M iff pOM = Pe(P|p) in
OM , i.e., iff e(P|p) = [M : K]. Let’s just try to create easy example of totally ramified prime
ideals. Here remark 3.14 (ii) is of help. For the desired counterexample, set L1 = Q(

√
3) and

L2 = Q(
√

−1). Now take the ideal (2) ⊂ Z. One can also see that this is ramified in both
extensions because 2 | ∆Li/Q this is theorem 3.22, and this can also quickly be verified using
3.11). Thereby it is automatically totally ramified, because [Li : Q] = 2. Now the composite
field extension L1L2 = M contains the field L′

1 = Q[
√

−3], where (2) is inert (this is a routine
consequence of 3.11). Now [L′

1 : M ], and we find that for any prime P ⊂ M above (2) ⊂ Z,

e(P|2Z) = e(P|2OL′
1
)e(2OL′

1
|2Z) ≤ [M : L′

1] · 1 = 2

. In particular, e(P|2Z) < 4, so (2) cannot be totally ramified in M .

3. Same idea. Inert means that f(P|p) = [L : K]. This time, take L1 = Q(
√

5) and L2 =
Q(

√
13), and the ideal (2) again, which is inert in both extensions (the discriminants are given

by 5 and 13, respectively). Now the composite contains Q(
√

65), which has discriminant 65.
But

(
65
2

)
= 1, so it is ramified there. In particular it cannot be inert, because now for a prime

ideal P of OM over (2) we have e(P|2Z)f(P|2Z) ≤ [L : K] and e(P|2Z) ≥ 2.

Exercise 3

Let K be a number field. For n ∈ N = {1, 2, 3, . . . }, set an(K) = #{I ⊂ OK | N(I) = n}. Let
m, n be coprime natural numbers. Show that amn(K) = am(K)an(K).

Solution. Define An(K) = {I ⊂ OK | N(I) = n}. Then one can see that if (n, m) = 1,

An(K)Am(K) = {IJ | I ⊂ An(K), J ⊂ Am(K)} = Anm(K).
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Here we used again that Ideals decompose uniquely into prime factors, and that for any I ∈
Anm(K), the set of prime ideal factors of I that divide n and the set of prime ideal factors that
divide m are disjoint.

Remark. In particular, this shows that it is enough to understand an(K) for prime powers n.
In analytic number theory, this has some nice consequences. There one can define the Dedekind
zeta function

ζK(s) =
∞∑

n=1
an(K)n−s,

which can be shows to define a holomorphic function for s ∈ C with Re(s) > 1. This function
has a meromorphic continuation to all of C, and it encodes many invariants of the number
field. For example, by the analytic class number formula, the residue of ζK(s) of the pole at
s = 1 provides information about the class number of K. The multiplicativity of the coefficients
relates directly to there being a Euler product expansion

ζK(s) =
∏
p∈N

(
1 + ap(K)p−s + ap2(K)p−2s + . . .

)
.

We will encounter the Dedekind zeta function in upcoming lectures.
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