
Solutions to Sheet 10

Exercise 1

Let p ≥ 2 be a prime number and let K = Q(ζ) be the p-th cyclotomic field, where ζ = e2πi/p ∈
C. The minimal polynomial of ζ over Q is Φn(X) = Xp−1 + · · · + X + 1. Let l1, . . . , ln be prime
numbers such that li ≡ 1 mod p for all i and set L = l1 · · · ln.

1. Show that there xists x ∈ Z with Φ(xLp) > 1.

2. Denote by l a prime number that divides Φp(xLp). Show that l ̸∈ {l1, . . . , ln} and l ̸= p.

3. Let l be a prime ideal of OK containing l. Show that f(l|lZ) = 1 and deduce that l ≡ 1
mod p.

4. Deduce that there exists infinitely many prime numbers l such that l ≡ 1 mod p.

Solution.

1. This is simple analysis. The term Xp−1 dominates and gets arbitrarily large.

2. One quickly finds Φp(xLp) ≡ 1 mod li and mod p.

3. Again, this is an application of Dedekind-Kummer. Again, we can apply Dedekind-Kummer
with respect to ζ, as OK = Z[ζ], i.e., [OK : Z[ζ]] = 1. Now l corresponds to some factor of the
decomposition of Φn(X) mod l. As Φn(xLp) ≡ 0 mod l (i.e., thre is a root), there is at least
one linear term in the decomposition of Φn(X). Let this term correspond to some prime ideal
l′ | lOK , which now has residue degree f(l′|l) = 1 (again, by 3.11). But Q(ζ)/Q is Galois, so the
residue degrees of primes over l are all the same. Hence f(l|l) = 1. Proposition 40 now yields
that l ≡ 1 mod p.

4. Given any finite list l1, . . . , ln of primes leaving residue 1 mod p, we can take their product
L and find some integer x > 1 such that Φn(xLp) > 1 by part 1. Now any prime l dividing
Φn(xLp) is not among the li and ̸= p by part 2, and part 3 shows that l ≡ 1 mod p. So no
finite list of primes 1 mod p can contain all such primes.

Exercise 2

Let m < 0 be a squarefree integer and set K = Q(
√

m).

1. Show that NK/Q(x) >
∣∣∣∆K/Q

∣∣∣ /4 for all x ∈ OK \ Z.

Solution.

1. Remember the formula for the discriminant of quadratic number fields:

∆Q(
√

m)/Q =
{

4m, if m ≡ 2, 3 (mod 4)
m, if m ≡ 1 (mod 4).
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If m ≡ 1 mod 4, this has been basically solved by sheet 6, exercise 2.3: There we found that for
all x ∈ OQ(

√
m) we have

NK/Q(x) ≥
∣∣∣∣m − 1

4

∣∣∣∣ >

∣∣∣∣m

4

∣∣∣∣ =
∣∣∣∣∣∆K/Q

4

∣∣∣∣∣ .

The case m ≡ 2, 3 mod 4 is handled similarly. We have OK = Z[
√

m], and NK/Q(a + b
√

m) =
a2 + mb2 ≥ m = |∆K | /4.

Exercise 3

1. Show that Cl(Q(
√

−2023)) = {1}.

2. Show that Cl(Q(
√

−67)) = {1}.

Solution. The Idea for both calculations is to follow the proof of lemma 4.4 in the lecture
notes. Let K = Q(

√
m) with some squarefree integer m < 0 identified as a subfield of C, and let

I ⊂ OK be any ideal. We can follow the proof of lemma 4.4 verbatim until just before equation
(4.1) to obtain a reduced Z-basis of (a1, a2) of I. That is, we find elements a1, a2 ∈ OK with
I = a1Z + a2Z, such that∣∣∣∣a2

a1

∣∣∣∣ ≥ 1, Re
(

a2
a1

)
≤ 1/2 and Im

(
a2
a1

)
≥ 0.

just as in the notes we set τ = a2
a1

and find that these conditions relate to |τ | ≥ 1, |Re τ | ≤ 1/2
and Im(τ) ≥ 0. In particular, we find Im τ ≥

√
3/2. Lemma 1.44 reads ∆K(I) = N(I)2∆K =

N(I)2bm, where b = 4 if m ≡ 2, 3 mod 4 and b = 1 otherwise. Equation (4.1) also goes through,
we find ∆K(I) = −4 |a1|4 Im(τ)2. Combining these equations, we arrive at

N(I)

√
−bm

3 ≥ |a1|2 = NK/Q(a1).

As a1 ∈ I we find I | a1OK , so there is some ideal J with IJ = a1OK (i.e., [J ] is the inverse of
[I] in Cl(K)). Now

N(I) N(J) = N(IJ) = N(a1OK) = NK/Q(a1) = |a1|2 ≤ N(I)

√
−bm

3 ,

implying that

N(J) ≤

√
−bm

3 .

The hope is now that this is not too large and leaves us with a number of cases that we can
handle. So let’s see.

1. Note that 2023 = 172 · 7, so that really K = Q(
√

−7). As −7 is 1 mod 4, we have b = 1, and
we find N(J) ≤

√
7
3 < 2. There are no prime ideals with norm that low (they cannot lie over a

integer prime) so the only possibility is J = OK . But now [I] = [J ] = idCl(K), and Cl(K) = {1}.

2. Again, −67 is 1 mod 4, but it is already squarefree and relatively large, so we’ll have to make
use of Dedekind kummer. But first of all, note that again b = 1, so we find

N(J) ≤
√

67
3 <

√
23 < 5.
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Now let’s inspect the primes above 2 and 3. The ring OK is generated as Z-module by 1+
√

−67
2 ,

which has minimal polynomial T 2 + T + 17 (I think). Mod 2 we have T 2 + T + 17 ≡ T 2 + T + 1,
which is irreducible and mod 3 we have T 2 + T + 17 ≡ T 2 + T + 2, which is irreducible. So we
find by Dedekind-Kummer that both 2 and 3 are inert in OK , hence the only ideal with norm
≤ 4 is J = 2OK , which is principal. In particular, we find that I has to be principal, hence
Cl(K) = {1}.
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