
Solutions to Sheet 11

Exercise 1

Let p be a prime number.

1. Show that there exist a, b ∈ Z such that a2 + b2 = −1 (mod p).

2. For a, b ∈ Z as in 1, set
Λ = · · · ⊂ R4.

Show that Λ is a lattice in R4 and that det Λ = p2.

3. Show that x2
1 + x2

2 + x2
3 + x2

4 ≡ 0 mod p for all (x1, . . . , x4)t ∈ Λ.

4. Use Minkowski’s theorem to show that there exist x1, . . . , x4 ∈ Z such that

x2
1 + x2

2 + x2
3 + x2

4 = p.

I.e. every prime number is a sum of four squares. (Hint: The volume of the 4-dimensional
unit ball is π2/4.)

Solution.

1. If −1 ∈ Z/pZ is a quadratic residue, we are done (choose a =
√

−1 and b = 0). Otherwise,
we have to show that there exists a solution to a2 + 1 ≡ b2 mod p. This is just a matter of
counting. Let S = {a2|a ∈ (Z/pZ)} be the set of squares mod p. Note that #S = p+1

2 . Now
the sets S and 1 + S must meet, as otherwise p = #(Z/pZ) ≥ #S + #(1 + S) = p + 1.

2. It is a lattice because the determinant of the basis vectors is invertible, and this determinant
is readily seen to be p2.

3. If (x1, . . . , x4)t ∈ Λ, we can write

x1 = pz1 + 0z2 + az3 + bz4

x2 = 0z1 + pz2 + bz3 + (−a)z4

x3 = 0z1 + 0z2 + 1z3 + 0z4

x4 = 0z1 + 0z2 + 0z3 + 1z4.

For their squares mod p we obtain

x2
1 = (az3 + bz4)2 = (az3)2 + 2abz3z4 + (bz4)2

x2
2 = (bz3 + (−a)z4)2 = (bz3)2 − 2abz3z4 + (az4)2

x2
3 = z2

3

x2
4 = z2

4 .

Hence we obtain (again mod p)

x2
1 + x2

2 + x2
3 + x2

4 = (z3 + z4)(a2 + b2 + 1) = 0.
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4. Write ∥−∥ fot the 2-norm on R4. Part 3 has shown that for every x ∈ Λ, ∥x∥2 ∈ pZ. Look
at the ball

B = {x ∈ R4 | ∥x∥2 < 2p}.

Using the hint one quickly verifies that vol(B) = π2

2 (2p)2. In our situation, Minkowski’s bound
states that every convex, point symmetric convex set around the origin with volume > 24 det(Λ)
has non-trivial intersection with Λ. As B satisfies all these assumptions (note that vol(B) >
18p2 > 24p2), we find some point x ∈ Λ with 0 < ∥x∥2 < 2p. As p | ∥x∥2, this implies ∥x∥2 = p,
and we are done.

Exercise 2

[Continuation of sheet 10, exercise 2] Let m < 0 be squarefree and set K = Q(
√

m).

2. Suppose that |∆K | is not a prime number and ∆K ̸∈ {−4, −8}. Show that Cl(K) is not
trivial.

Solution. The hint (I didn’t copy the hint) suggested to look at the smallest prime divisor of
∆K . So let’s do that, and denote it by p. We know that p ramifies in K, i.e., we have pOK = p2

for some prime ideal p in OK . Now assume for sake of contradiction that Cl(K) is trivial. Then
p is principal, i.e., p = (a) for some a ∈ OK . Now a2 = p (up to a unit), and we find that a ̸∈ Z.
Hence part 1 of the exercise (on sheet 10) implies that

p = NK/Q(a) ≥ ∆K

4 ≥ p2

4 .

This is only possible if p ∈ {2, 3}. In the case p = 2 we find |∆K | ≤ 8, in the case p = 3 we find
|∆K | ≤ 12. Now let us look at discriminants in this range. The discriminant values are

{−4, −8, −3, −7, −11}.

The cases ∆K = {−4, −8} are excluded, the other cases are excluded because they arise from
Q(

√
m) when m is (a negative) prime. So there are simply no possibilities left.

Exercise 3

Compute Cl(Q(10)). Solution. We use Minkowski’s bound. It states that every ideal class
C ∈ Cl(K) contains a prime ideal with norm ≤ MK , where

MK =
√

|∆|K
( 4

π

)r2 nn

n! ,

where n = [K : Q] and r2 is the number of complex embeddings (up to conjugation). In
our situation, one quickly verifies MQ(

√
10) =

√
10 = 3.1 . . . . So we only have to understand

the primes up until norm 3. All of these prime ideals have to lie above (2) or (3), so we
can use Dedekind-Kummer to find them. Note that the minimal polynomial of

√
10 over Q

is f(T ) = T 2 − 10. This reduces mod 2 to T 2 and mod 3 to (T + 1)(T − 1). Hence the
decompositions are given by

2 = p2
2, 3 = p3p

′
3
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for prime ideals p2, p3, p′
3 ⊂ OK . Note that N(p2) = 2, N(p3) = N(p′

3) = 3. With Dedekind-
Kummer we can also explicitely describe all of those prime ideals, and find that (perhaps after
interchanging p3 and p′

3)

(1 +
√

10) = p2
3, (2 +

√
10) = p2p3.

But now, in Cl(K) we have the equalities

1 = [p2]2 = [p3][p′
3] = [p3]2,

and in particular we find # Cl(K) ≤ 2. But one quickly finds that p2 is not principal: The
equation 2 = α2 is not solvable in OK , as NK/Q(α) = ±2 is impossible. Indeed, NK/Q(x +
y
√

10) = x2 − 10y2 ̸≡ ±2 mod 5 for x, y ∈ Z (the only quadratic residues mod 5 are ±1). So
# Cl(K) > 1, this implies Cl(K) = Z/2Z, and we are done.

Exercise 4

We denote by
√

2 the positive square root of 2 in R.

1. Supose that u ∈ Z[
√

2]× and 1 < u < 1 +
√

2. Show that u = 1.

2. Deduce that Z[
√

2]× = {±(1 +
√

2)k | k ∈ Z}.

Solution.

1. Suppose for sake of contradiction that (a + b
√

2)(a − b
√

2) = 1, with 1 < a + b
√

2 < 1 +
√

2.
Then we find (using the triangle inequality)

2 |a| ≤
∣∣∣a + b

√
2
∣∣∣︸ ︷︷ ︸

≤1+
√

2

+
∣∣∣a − b

√
2
∣∣∣︸ ︷︷ ︸

≤1

≤ 2 +
√

2,

hence |a| ≤ 1 + 1√
2 . One readily verifies that this results in a contradiction.

2. By multiplying with (1 +
√

2) suitably often, any positive unit can be reduced to a unit with
absolute value in the range [1, 1 +

√
2). But the only unit in this range is 1, hence any positive

unit is of the form (1 +
√

2)k for k ∈ Z. The same can be done for negative units, and we find
O×

K = {±(1 +
√

2)k | k ∈ Z}.
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