
Solutions to Sheet 13

Exercise 1

Let K be a number field of degree d.

1. Show that there exists a constant C, depending only on K, with the following property. If
I is a principal ideal of OK , then I = αOK for some α ∈ OK such that |σ(α)| ≤ C N(I)1/d

for every real or complex embedding of K.

2. Let K ⊂ R be a quadratic number field. Let η ∈ O×
K be such that O×

K = {±ηn; n ∈ Z}.
Show that, in this case, one can take C = max{|η| , |η|−1}1/2.

3. Do there exists x, y ∈ Z with x2 − 82y2 = 2?

Solution.

1. Assume that I = (α) ̸= (0). Then I = (uα) for every unit u ∈ O×
K . The map L from the

proof of Dirichlet’s unit theorem extends to a map

L : OK \ {0} → Rr+s, ξ 7→ (log |σ1(ξ)| , . . . , log |σr(ξ)| , 2 log |σr+1(ξ)| , . . . , 2 log |σr+s(ξ)|),

which is a morphism of monoids.
We have seen in the lecture that the image of O×

K under this map is a lattice in a linear subspace
V . Here V is given by those vectors of Rr+s whose coordinates sum up to 0. We are interested
in the image of the set αO×

K under L. This is contained in the affine-linear subspace L(α) + V .
The exercise now translates to: There is some constant C > 0 depending only on K such that
there is a point ξ = (ξ1, . . . , ξr, 2ξr+1, . . . , 2ξr+s) ∈ L(α) + L(O×

K) ⊂ L(α) + V with

max ξi ≤ 1
d

log N(I) + log(C)

We define a norm ∥−∥ on Rr+s via

∥(x1, . . . , xr+s)t∥ = max(|x1| , . . . , |xr| , 1
2 |xr+1| , . . . , 1

2 |xr+s|)

and a linear function S : Rr+s → R by

S((x1, . . . , xr+s)t) =
r+s∑
i=1

xi.

Let W be the vector space spanned by

w0 = (1, . . . , 1, 2, . . . , 2)

with r ones and s twos and write L(α) = w + v where v ∈ V and w ∈ W . We have

S(L(α)) = log N(I),

hence we obtain (as w ∈ Rw0, S(v) = 0 and N(I) ≥ 1)

∥w∥ = 1
d

|S(w)| = 1
d

|S(w + v)| = 1
d

|S(L(α))| = 1
d

log N(I).
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All we need to do is to find a point of L(αO×
K) close to w. For ν ∈ V define d(ν) =

infγ∈L(O×
K)(∥ν − γ∥), and set C = supν∈V d(ν). This is well-defined because L(O×

K) is a lattice
in V . Now C only depends on K, and we find a point

L(α) + L(O×
K) ∋ w + ν0 = ξ = (ξ1, . . . , ξr, 2ξr+1, . . . , 2ξr+s)

with ν0 ∈ V and ∥ν0∥ ≤ C. In particular,

max ξi ≤ ∥ξ∥ ≤ ∥w∥ + ∥ν0∥ ≤ 1
d

log N(I) + C.

This solves the exercise.

2. Let η be as in the question and assume |η| < 1. Let σ1, σ2 : K ↪→ R be the two real
embeddings of K (i.e., σ1 is the identity on K ⊂ R and σ2 is "conjugation"). Suppose I = (α).
Then we can pick n such that

σ1(ηnα) = |η|n |σ1(α)| ∈
(
|η|1/2 N(I)1/2, |η|−1/2 N(I)1/2

)
.

Now
|σ2(ηnα)| =

∣∣η−n
∣∣ |σ2(α)| =

(
|η|−n σ1(α)−1

)
N(I) ≤ 1

|η|1/2 N(I)1/2.

3. Let K = Q(
√

82). A unit as in 2 is given by η = 9 +
√

82. This can be checked similarly to
sheet 11, exercise 4. Also, note that (by Dedekind-Kummer) 2OK = p2 for some prime ideal p.
Now N(p) = 2, and a solution to x2 − 82y2 = 2 would result in p being principal. By part one
and two, it suffices to show that there is no solution with

max
∣∣∣x ±

√
82y

∣∣∣ ≤ N(2OK)1/2
√

9 +
√

82 < 7.

But there are no such solutios as
√

82 > 7.

Exercise 2

Show that
ζQ(

√
6ζQ(

√
7ζQ(

√
42) = ζQ(

√
6,

√
7)ζ

2
Q.

Solution. Here we will only sketch a solution. The details are tedious. Recall that from the
lecture (Example 3.12, say) we have for quadratic fields K = Q(

√
m) with discriminand ∆K

pOK =


prime ideal, if

(
∆K

p

)
= −1

p1p2, (totally split) if
(

∆K
p

)
= 1

p2, (totally ramified) if
(

∆K
p

)
= 0.

Also, note that for K as above we have

ζK(s) =
∏
p

(
1 − 1

N(ps)

)−1
=

∏
p∈Z prime

∏
p|pOK

(
1 − 1

N(p)s

)−1

=
∏(

∆K
p

)
=−1

(
1 − 1

N(p)2s

)−1 ∏(
∆K

p

)
=1

(
1 − 1

N(p)s

)−2 ∏(
∆K

p

)
=0

(
1 − 1

N(p)s

)
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This yields some expansion of ζQ(
√

6ζQ(
√

7ζQ(
√

42) in terms of factors indexed by prime numbers.

Write L = Q(
√

6,
√

7). We want to do something similar as above for the function ζQ(
√

6,
√

7).
Recall that if pOK = pe1

1 · · · peg
g we have e1 = · · · = eg = e, f(p1) = · · · = f(pg) = f and efg = 4.

Also, as Gal(L/Q) ∼= (Z/2Z)2 is not cyclic, we cannot have inert primes, i.e., we never have
f = 4. Indeed, if there was an inert prime p | p, we’d find Gal(L/Q) = D(p|p) ∼= Gal(κ(p)/Fp),
and the latter (being the Galois group of an extension of finite fields) is cyclic. Hence, the only
possible splitting behaviours of a prime p ∈ Z are:

g = 4 =⇒
∏
p|p

(
1 − 1

N(p)s

)−1
= (1 − p−s)−4

f = 2, g = 2 =⇒
∏
p|p

(
1 − 1

N(p)s

)−1
= (1 − p−2s)−2

e = 2, f = 2, g = 1 =⇒
∏
p|p

(
1 − 1

N(p)s

)−1
= (1 − p−2s)−1

e = 2, f = 1, g = 2 =⇒
∏
p|p

(
1 − 1

N(p)s

)−1
= (1 − p−s)−2

e = 4, f = 1, g = 1 =⇒
∏
p|p

(
1 − 1

N(p)s

)−1
= (1 − p−s)−1.

But one easily checks that ∆L has only prime divisors 2, 3, 7, so that all other primes are
unramified on OL. Using this and that(42

p

)
=
(6

p

)(7
p

)
,

we can show that the Euler factors at each prime p coincide for both functions.

Exercise 3

Let K be a number field and let

log : C \ (−∞, 0] → C

denote the principal branch of the complex logarithm. The variable p always runs over the
non-zero primes of OK in the following.

1. Show that
lim

s→1+

1
log(s − 1)

∑
p

log(1 − N(p)−s) = 1.

2. Show that ∑
p; f(p)>1

1
N(p) +

∑
p

∞∑
n=2

1
n N(p)n

< ∞.

3. Using 1 and 2, deduce that there exists infinitely many prime ideals p of OK with f(p) = 1.

Solution. The following is a bit unprecise as I sometimes forgot to insert absolute-value
brackets. But it works out if we simply assume s ∈ R everywhere.
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1. We know that the Dedekind-zeta function ζK(s) is holomorphic in Re s > 1, has a pole of
order 1 at s = 1 with residue κ > 0 and has an Euler product

ζK(s) =
∏
p

(
1 − N(p)−s)−1

.

Hence we find
lim

s→1+

(
(s − 1)

∏
p

(
1 − N(p)−s)−1

)
= κ,

and the claim follows after taking logarithms.

2. Note that there are at most [K : Q] prime ideals of OK above each prime number p ∈ Z.
If p lies above p and f(p) > 1, we have (by definition) N(p) ≥ p2. Hence we obtain that∑

p,f(p)>1
N(p)−s ≤ [K : Q]

∑
p

p−2s,

which is (absolutely) convergent for Re s > 1
2 . Similarly, we find that

1
[K : Q]

∑
p

∞∑
n=2

1
n N(p)sn

≤
∑

p

∞∑
n=2

1
npsn

<
∑

p

p−2s
∞∑

n=0
p−sn <

( ∞∑
n=0

2−sn

)∑
p

p−2s,

which is absolutely convergent for Re s > 1/2.

3. Recall that log(1 + t) =
∑∞

n=1
(−1)n−1

n tn for |t| < 1. We plug this into the logarithm of the
euler product to obtain for Re s > 1

log ζK(s) = −
∑
p

log(1 − N(p)−s) =
∑
p

∞∑
n=1

1
n

N(p)−ns.

Splitting off the n = 1 terms, this yields

log ζK(s) =
∑

p,f(p)=1
N(p)−s +

∑
p,f(p)>1

N(p)−s +
∑
p

∞∑
n=2

1
n N(p)sn

.

The left hand side of this equation diverges for s → 1+, but the last two terms of the RHS
remain finite by part 2. The claim follows.
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