
Solutions to Sheet 14

Exercise 1

Let m ∈ N and let χ be a Dirichlet character modulo m.

1. Show that log |1 − w| = − Re
∑∞

k=1
wk

k for all w ∈ C with |w| < 1.

2. Show that 3 + 4 cos θ + cos 2θ ≥ 0 for all θ ∈ R.

3. Show that |1 − w|3 |1 − wu|4
∣∣1 − wu2∣∣ ≤ 1 for all w ∈ [0, 1) and all u ∈ C with |u| = 1.

4. Show that
∣∣ζ(σ)3∣∣ |L(σ + it; χ)|4

∣∣L(σ + 2it; χ2)
∣∣ ≥ 1 for all σ ∈ (1, ∞) and t ∈ R.

5. Deduce that L(1 + it; χ) ̸= 0 for all t ∈ R \ {0}.

Solution. This exercise reviews standard methods to prove zero-free regions of L-functions,
and most introductors texts to analytic number theory should cover the content of this exercise
(see for example [Jörg Brüdern, Einführung in die analytische Zahlentheorie, p. 101f]). Hence
I will only sketch the solution.

1. The power series is that of the standard branch of the logarithm. The claim now follows by
its properties.

2. This is a trick found by Hadamard and de la Vallée Poussin. One quickly checks that

3 + 4 cos α + cos 2(α) = 2(1 + cos α)2 ≥ 0.

3. Okay clearly the previous two exercises want us to take logaritm. We write u = eαi and find

log(|1 − w|3 |1 − wu|4
∣∣∣1 − wu2

∣∣∣) = 3 log(|1 − w|) + 4 log |1 − wu| + log(
∣∣∣1 − wu2

∣∣∣)
= −

∑
k

wn

n
(3 + 4 cos(nα) + cos(2nθ)) ≤ 0.

In the last inequality we used 2.

4. Developing this in a euler product, the terms that occur are exactly of the form from exercise
3, but (multiplicatively) inverted. The claim follows.

5. Suppose that L(1 + it; χ) = 0 for some t ̸= 0. Then also

lim
σ→1+

∣∣∣ζ(σ)3
∣∣∣ |L(σ + it; χ)|4

∣∣∣L(σ + 2it; χ2)
∣∣∣ = 0,

as all the functions are analytic the degree 3-pole of ζ(σ)3 at σ = 1 get’s eaten by L(σ + it; χ)4,
which is a degree-4-zero at this point. This contradicts part 4. (Here we used that all the
functions have (meromorphic) continuations to the whole plane.)
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Exercise 2

Let χ be a non-trivial Dirichlet character modulo 8. Show that

L(1; χ) > 1 − 1
3 − 1

5 + 1
7 = 64

105 .

Solution. The idea is that every Dirichlet character mod 8 is real as every element in (Z/2Z)
has order at most 2. Furthermore, we have χ(3)χ(5) = χ(7). Hence the smallest possible value
that the series

L(1; χ) =
∞∑

n=1

χ(n)
n

=
∑

k∈8N

(
χ(k + 1)

k + 1 + χ(k + 3)
k + 3 + χ(k + 5)

k + 5 + χ(k + 7)
k + 7

)
can ever take is if χ(3) = χ(5) = (−1) and χ(7) = 1. In this case the above becomes

L(1; χ) =
∑

k∈8N

( 1
k + 1 − 1

k + 3 − 1
k + 5 + 1

k + 7

)
One quickly checks that for each k ∈ N (as x 7→ 1

x is a convex function),
1

k + 1 − 1
k + 3 − 1

k + 5 + 1
k + 7 > 0,

and the claim follows after truncating the series above at k = 1.

Exercise 3

Let m ∈ N, set ζm = e2πi/m and let K ⊂ Q(ζm) be a number field of degree d. Set G = Gal(K/Q)
and identify Ĝ with a subgroup of the group of Dirichlet characters modulo m as in the lecture.

1. Show that for each χ ∈ Ĝ, there exists a unique f = fχ ∈ N (called the conductor of χ) such
that f | m and χ is the composition of the canonical homomorphism (Z/mZ)× → (Z/fZ)×

with a primitive Dirichlet character χprim modulo f .

2. Let p be a prime number such that m = m′pe for some m′, e ∈ N such that p ∤ m′. Set
ζm′ = e2πi/m′ and L = K ∩ Q(ζm′). Show that∏

p|pOK

(1 − N(p)−s) =
∏

q|pOL

(1 − N(q)−s) =
∏

χ∈Ĝ

(1 − χprim(p)p−s)

3. Show that ζK(s) =
∏

χ∈Ĝ
L(s; χprim) for all s ∈ C \ {1} with Re s > 1 − 1/d.

Solution.

1. We let f > 1 be the minimal integer with the desired property.

2. We are in the following situation.

K Q(ζm) = Q(ζpe) · Q(ζm′)

L Q(ζm′)

Q Q
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We know that the extension Q ↪→ Q(ζ ′
m) is unramified above p as p does not divide the dis-

criminant of Q(ζm′). Hence p is also unramified in L (by multiplicativity of ramification indeces
along extensions of fields), and we find that

pOK = q1 . . . qr

for r pairwise distinct primes qi ⊂ OL. Let fi be the residue degree of qi over p, then on the
side of the Euler factors we find

∏
q|pOL

(1 − N(q)−s) =
r∏

i=1
(1 − p−fis).

As Q(ζm) ∼= Q(ζm′)[T ]/(T pe − 1) we find that above p (or rather, above every prime dividing
pOQ(ζm′ )) the extension Q(ζm′) ↪→ Q(ζm) is totally ramified, hence the extension L ↪→ K is
totally ramified as well (by multiplicativity of residue degrees along extensions). Thereby we
can write qiOK = pei

i for prime ideals pi ⊂ OK . But the Euler factors forget about the numbers
ei. We obtain the first equality, as now

∏
p|pOK

(1 − N(p)−s) =
r∏

i=1
(1 − p−fis) =

∏
q|pOL

(1 − N(q)−s).

We now show the equality ∏
q|pOL

(1 − N(q)−s) =
∏

χ∈Ĝ

(1 − χprim(p)p−s).

We make use of Theorem 6.13 in the lecture and write H = Gal(L/Q). Applied to our situation,
the Theorem states that

ζL(s) =
∏

q|m′OL

1
1 − N(q)−s

∏
χ∈Ĥ

L(s; χ).

Hence (as p ∤ m′) the Euler factor of ζL(s) at p is given by

∏
q|pOL

1
1 − N(q)s

=
∏

χ∈Ĥ

1
1 − χ(p)ps

.

Now the argument gets a little wild1. We need to show that∏
χ∈Ĥ

(1 − χ(p)p−s) =
∏

χ∈Ĝ

(1 − χprim(p)p−s),

i.e., we need to study the relations between the character groups of H and G. Using standard
arguments in Galois theory, one can show that the diagram of abelian groups

Gal(Q(ζm)/Q) G

Gal(Q(ζm′)/Q) H

1I was too lazy to formulate out what the category-theoretic words mean. But all of the following can be
made explicit, and I encourage you to do so if you haven’t encountered the words used here before.
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is a pushout diagram in the category of (finitely generated) abelian groups. Now we use that
HomfinAb(−,C×) is an exact functor (or equivalently, Q/Z is an injective object in Ab), to obtain
that the dual diagram

Ĥ ̂(Z/m′Z)×

Ĝ ̂(Z/mZ)×

is a pullback-diagram, which is to say, we have Ĥ ∼= Ĝ ∩ ̂(Z/m′Z)× inside ̂(Z/mZ)× (where we
identify the multiplicative residue groups with the respective cyclotomic Galois-groups). Now
we are almost done. It is relatively straight-forward to check that whenever χ ∈ Ĝ, we have

χprim(p) = 0 ⇐⇒ p | fχ ⇐⇒ χ ̸∈ ̂(Z/m′Z)× ⊂ ̂(Z/mZ)× ⇐⇒ χ ̸∈ Ĥ.

In particular, as we have χ(p) = χprim(p) whenever p ∤ fχ, we find∏
χ∈Ĥ

(1 − χ(p)p−s) =
∏

χ∈Ĝ

(1 − χprim(p)p−s).

The claim follows.

3. This follows by comparing the factors of the respective Euler products.

Exercise 4

Let p be an odd prime number and let ζ ∈ C be a root of unity of order p. Show that
1 + ζ ∈ O×

Q(ζ).

Solution. Note that 1 + ζ = 1−ζ2

1−ζ . If we pick n ∈ N such that 2n ≡ 1 mod p, we have

1 − ζ2

1 − ζ
= 1 − ζ2

1 − ζ2n
=
(

1 − ζ2n

1 − ζ2

)−1

.

And this is in OK , as
1 − ζ2n

1 − ζ2 = 1 + ζ2 + ζ4 + · · · + ζ2(n−1).
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