
Solutions to Sheet 1

Exercise 1

1. We may choose an = (2n + 2)! + 2. Note that now 2 | (2n + 2)! + 2, 3 | (2n + 2)! + 3, etc.

2. We already know that π(x) ≤ M x
log(x) for some M > 0 and x > 2. We solve the exercise

by assuming that for all c > 0 there are only finitely many n ∈ N such that the interval
[n, n + c log(n)] does not contain a prime, which ultimately will result in a contradiction to the
statement above.

Let us make a choice for c and count the number of primes in [x, 2x], for some large number x.
We trivially obtain

π(2x) − π(x) ≤ M
2x

log(2x) .

By our assumption, if x is large enough, there is no n ∈ N∩[x, 2x] such the interval [n, n+c log(n)]
does not contain a prime. Let us define numbers ak such that a0 = [x]+1, ak+1 = ak +c log(ak).
Further, let N ∈ N be defined via aN−1 ≤ 2x < aN . As every interval [ak, ak+1] contains a
prime, this yields the estimate N ≤ π(2x)−π(x). Also, for k < N we have ak+1−ak ≤ c log(2x).
This yields the estimate

x

c log(2x) ≤ N ≤ π(2x) − π(x) ≤ 2M
x

log(2x) ,

which is a contradiction once we choose c < 1
2M .

Notes after correcting.

• Main reason for point-loss: Messy write-ups

• Common mistake: Whenever we have inequalities a ≤ b and c ≤ d, we cannot deduce
a − c ≤ b − d. For that reason, we cannot effectively bound π(x + h) − π(x) for small
values of h by only knowing an upper bound for π.

• f(x) = O(g(x)) does not imply that f(x)
g(x) approaches some value C ∈ R as x → ∞. Rather,

it implies that the absolute value of this fraction is bounded.

Exercise 2

1. Via α⋆α = 1, we obtain α(1) = ±1. Having defined α(n) for values n ≤ N , α(N) is uniquely
determined by the equation

1 =
∑
d|N

α(d)α(N/d) = 2α(N) +
∑

d|N,d ̸=1,N

α(d)α(N/d).

Any choice of α(1) thereby extends to an arithmetic function with α ⋆ α = 1, and α cannot be
multiplicative if α(1) ̸= 1.

2. We set α(1) = 1 define α(pn) via the taylor series expansion of (1 − x) −1
2 :∑

n∈N
α(pn)xn = (1 − x)

−1
2

1



(Note that (1 − x) −1
2 is holomorphic in some neighbourhood around 0) and extend α to a

multiplicative function via α(n) = ∏
p α(pvp(n)). By the formula for multiplying taylor series,

we find ∑
n∈N

xn = 1
1 − x

=
( 1

1 − x

)2 1
2

=
∑
k∈N

xk
∑

0≤l≤k

α(pl)α(pk−l).

After equating coefficients, this gives∑
0≤l≤k

α(pl)α(pk−1) = 1,

i.e. α ⋆ α = 1. (Note that α and 1 are multiplicative, so it suffices to check the equality on
prime-powers). Basic analysis also reveals that α is now given by α(pn) = (2n)!

4n(n!)2 , as demanded
by the exercise.

Notes after correcting.

• Part 1 was relatively easy.

• For part 2, one can also use that α(pn) = (−1)n
(− 1

2
n

)
and deduce α ⋆ α = 1 using formulas

for binomial coefficients. This does not use generating functions, but it is messy.

Exercise 3

1. It is easily seen that both sides are multiplicative, and we may reduce to the case n = pk, p
prime. The LHS becomes 1 + ak, the RHS becomes 1 + ak too, and we are done.

2. Again, both sides are multiplicative. (For the RHS, note that the product and the convolution
of any two multiplicative functions is multiplicative, and that RHS = 1 ⋆ (µτ).) For n = 1, we
find LHS = RHS = 1. For prime powers n = pk with k ≥ 1, we find

LHS = µ(p0)τ(p0) + µ(p1)τ(p1) + µ(p2)τ(p2) + · · · + µ(pn)τ(pn)︸ ︷︷ ︸
=0 as µ(pk) = 0 for k ≥ 2.

= 1 − 2 = −1.

As in this case we also have RHS = −1, we are done.

3. We write e(θ) for e2πiθ. We first get rid of the condition (m, n) = 1 via adding the term

η((m, n)) = (1 ⋆ µ)((m, n))

to each summand, obtaining

LHS =
∑

1≤m≤n and (m,n)=1
e(m/n)

∑
d|(m,n)

µ(d).

We change the order of summation, bringing d to the outer sum, writing m = dk for d | n. This
gives

LHS =
∑
d|n

µ(d)
∑

k≤n/d

e( k
n/d).

Now the inner sum goes over all n/d-th roots of unity, and thereby equals 0 whenever n/d > 1.
Hence we find LHS = RHS, as desired.

Notes after correcting.
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• Part 2 can be done in multiple ways, one can for example use binomial coefficient stuff to
check the identity directly (for general n and not only prime-powers).

• The trick used in part 3 is quite commonly used and should be added to your Analytic
number theory toolkit!

Exercise 4

We use summation by parts, setting an = 1 and g(x) = 1√
x
. We find

∑
1≤n≤x

1√
n

= [x]√
x

+ 1
2

∫ x

1

[t]
t

3
2

dt =
√

x − {x}√
x

+ 1
2

∫ x

1

1√
t

− {t}
t3/2 dt.

We have {x}/
√

x = O(x− 1
2 ),

1
2

∫ x

1

1√
t

dt = [
√

t]x1 =
√

x − 1

and
1
2

∫ x

1

{t}
t3/2 dt = 1

2

∫ ∞

1

{t}
t3/2 dt − 1

2

∫ ∞

x

{t}
t3/2 dt.

Here the first integral converges, and the second integral lies within O(x−1/2). The claim follows,
with

C = 1
2

∫ ∞

1

{t}
t3/2 dt − 1.

Notes after correcting.

• Common mistake: Errors while calculating the integral (but I am sure this will get better
as the course progresses).
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