Solutions to Sheet 1

Exercise 1

1. We may choose a, = (2n + 2)! + 2. Note that now 2 | (2n +2)! +2, 3 | (2n + 2)! + 3, etc.

2. We already know that w(z) < M % for some M > 0 and = > 2. We solve the exercise
by assuming that for all ¢ > 0 there are only finitely many n € N such that the interval
[n,n + clog(n)] does not contain a prime, which ultimately will result in a contradiction to the

statement above.

Let us make a choice for ¢ and count the number of primes in [z, 2z], for some large number x.

We trivially obtain
2z

w(2z) — 7(x) < Mlog(Qa:)'
By our assumption, if x is large enough, there is no n € N[z, 2z| such the interval [n, n+clog(n)]
does not contain a prime. Let us define numbers ay such that ag = [z]+1, ag41 = ax +clog(ag).
Further, let N € N be defined via ay_1 < 2x < ay. As every interval [ag,ar11] contains a
prime, this yields the estimate N < 7(2z) —n(z). Also, for k < N we have ap11—ax < clog(2z).
This yields the estimate
x x

<N <7(2z) —7(z) < 2Mmy

which is a contradiction once we choose ¢ < ﬁ

Notes after correcting.

e Main reason for point-loss: Messy write-ups

e Common mistake: Whenever we have inequalities a < b and ¢ < d, we cannot deduce
a —c < b—d. For that reason, we cannot effectively bound 7 (x + h) — w(z) for small
values of h by only knowing an upper bound for 7.

e f(x) = O(g(x)) does not imply that % approaches some value C' € R as © — co. Rather,

X
it implies that the absolute value of this fraction is bounded.

Exercise 2

1. Via axa = 1, we obtain a(1) = +1. Having defined a(n) for values n < N, a(N) is uniquely
determined by the equation

1= a(d)a(N/d) =2a(N)+ > a(da(N/d).
dN d|N,d#1,N
Any choice of «(1) thereby extends to an arithmetic function with ax @ = 1, and « cannot be
multiplicative if a(1) # 1.
2. We set a(1) = 1 define a(p™) via the taylor series expansion of (1 — x)%l

Sapha=(1-2)7

neN



(Note that (1 — :B)_Tl is holomorphic in some neighbourhood around 0) and extend « to a
multiplicative function via a(n) =[], a(p’™). By the formula for multiplying taylor series,

we find
2}
e R )

neN keN 0<i<k

After equating coeflicients, this gives

> a@)a@ ) =1,
0<I<k
ie. axa = 1. (Note that o and 1 are multiplicative, so it suffices to check the equality on

prime-powers). Basic analysis also reveals that « is now given by a(p™) = 4£L2(:3;2,
by the exercise.

as demanded

Notes after correcting.

e Part 1 was relatively easy.

1
« For part 2, one can also use that a(p™) = (—1)"(7,2) and deduce ax a = 1 using formulas
for binomial coefficients. This does not use generating functions, but it is messy.

Exercise 3

1. It is easily seen that both sides are multiplicative, and we may reduce to the case n = p¥, p
prime. The LHS becomes 1 + ak, the RHS becomes 1 + ak too, and we are done.

2. Again, both sides are multiplicative. (For the RHS, note that the product and the convolution
of any two multiplicative functions is multiplicative, and that RHS = 1 % (u7).) For n = 1, we
find LHS = RHS = 1. For prime powers n = p* with k > 1, we find

LHS = u(5°)7(p°) + u(p")7(0") + p(p>)7(5) + -+ p(p")r(p") = 1 — 2 = 1.

=0 as u(p*) =0 for k > 2.

As in this case we also have RHS = —1, we are done.
3. We write e(#) for e?™. We first get rid of the condition (m,n) = 1 via adding the term

n((m,n)) = (1x p)((m, n))

to each summand, obtaining

LHS = Z e(m/n) Z w(d).

1<m<n and (m,n)=1 d|(m,n)
We change the order of summation, bringing d to the outer sum, writing m = dk for d | n. This
gives
LHS =% u(d) Y e().
din k<n/d

Now the inner sum goes over all n/d-th roots of unity, and thereby equals 0 whenever n/d > 1.
Hence we find LHS = RHS, as desired.

Notes after correcting.



e Part 2 can be done in multiple ways, one can for example use binomial coefficient stuff to
check the identity directly (for general n and not only prime-powers).

e The trick used in part 3 is quite commonly used and should be added to your Analytic
number theory toolkit!

Exercise 4

We use summation by parts, setting a,, = 1 and g(z) = L We find

xT

1 _ [.%'] I [t] _ {ZC} 1 /* 1 {t}
1§;§z\/ﬁ_\/5+2/1 ﬁdt_ﬁ_ﬁ+2/l %_Wdt'

We have {z}/y/z = O(ZL‘_%),
dt = [VI]f = v -1
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Here the first integral converges, and the second integral lies within O(x_l/ 2). The claim follows,

with L o o
AU

2 )1 $3/2

Notes after correcting.

o Common mistake: Errors while calculating the integral (but I am sure this will get better
as the course progresses).
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