Solutions to Sheet 2

Exercise 1

1. The squarefull non-squares up to onehundred are 8, 27,32, 72.

2. Tt suffices to show that any squarefull prime power can be written uniquely as p* = a2b>
with b square-free. But this is the same as writing £ = 2a 4+ 3b with 0 < b < 1, and this is
possible in a unique way once k > 2.

3. Using the above and that b is square-free iff u?(b) = 1, we may write
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We can extend the Dirichlet series of ;2 into an Euler product, obtaining
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(In the second-to-last equality we used (1 +z)(1 —z) =1 — z2.) We find
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done.

Exercise 2

This is just a messy calculation. We somehow want to get of the (a, b)-symbol in the sum. We
do so by using that given a,b € N, we find unique coprime numbers k,! with a = k(a,b) and
b =1I(a,b). Now summing over all possible geds d yields
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where we rephrased the coprimality condition on k and [ using the trick from the last sheet.
Now we rewrite
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obtaining
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Tracing through this calculation, we find that it is sufficient for absolute convergence to have
R(s) > 1 and R(t) > 1. These conditions are easily seen to be necessary too (the sub-sums with
a =1 or b =1 diverge otherwise).

Notes after correcting.



e Even though it is easily seen that the double sum cannot converge absolutely whenever
(say) R(s) < 1, this does immediately follow from the divergence of the series in the (-
representation! The reason is that it is that we split the series in the first equality. It is
possible to split a convergent series into divergent ones, as for example

do=>(1-1)#) 1-> 1
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Exercise 3

1. We have

P(s) = Zn_s — 22(271)_5

n

and

U(s) = ans - 32(37@)73.

n
2. Using the Leibniz criterion, we see that the series converge conditionally on the positive real

line, and thereby for #s > 0 by theorem (1.10). Alternatively, one can use (1.11) to see that
the abscissa of convergence is given by

= 0.
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3. As both ¢ and ¢ are holomorphic in Rs > 0, ¢ can only have a pole whenever (1 — 2!17%)
and (1 — 317%) vanish. But this is the case whenever

1 =275 =eloe2U=5) o (log2)(1 — 5) € 27iZ

and
1=317%=¢los)U=5) o (log3)(1 — s) € 2niZ.

4. If log2/log3 = p/q was rational, we’d find that 2¢ = 3P, contradiction. Hence the two sets
(log2)~1(2miZ) and (log3)~!(27iZ) have intersection the set {0}. Thereby, ¢ cannot have a
pole away from s = 1. There it has a pole from a theorem in the lecture, and it is a simple pole
as (2175 — 1) has a simple zero at s = 1.

Exercise 4

We know that the d-th cyclotomic polynomial ®,4(z) has degree ¢(d), and that [, a(z) =
2™ — 1. Hence

Zgo(d) = Zdeg by = deg (H @d) = deg(z" — 1) =mn,
dln din d|n
hence (by Mobius-inversion)

p(n) = (uxid)(n) = 3" = p(d).
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Now we find
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We write [x/d] = z/d + O(1) and use that u(d) € {—1,0,1}. This gives
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(by approximating the n-th harmonic number with the logarithm) and we have
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One can show the estimate Y,y d~2 < 27! using the inequality

S d </ t2dt = O((x — 1)) = Oz ).

r<d<oo 1

Done.

Notes after correcting.

e The convolution formula can also be obtained formally by writing

p(n) = > 1=>" > p(d)

k<n and (k,n)=1 k<nd|(k,n)

and reordering sums.
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