
Solutions to Sheet 2

Exercise 1

1. The squarefull non-squares up to onehundred are 8, 27, 32, 72.

2. It suffices to show that any squarefull prime power can be written uniquely as pk = a2b3

with b square-free. But this is the same as writing k = 2a + 3b with 0 ≤ b ≤ 1, and this is
possible in a unique way once k ≥ 2.

3. Using the above and that b is square-free iff µ2(b) = 1, we may write

∑
n squarefull

n−s =
∑
a,b

µ2(b)
a2sb3s

= ζ(2s)
∑

b

µ2(b)b−3s.

We can extend the Dirichlet series of µ2 into an Euler product, obtaining

∑
n∈N

µ2(n)n−s =
∏
p

(
1 + p−s)

=
∏
p

(1 − p−s)−1

(1 − p−2s)−1 = ζ(s)
ζ(2s) .

(In the second-to-last equality we used (1 + x)(1 − x) = 1 − x2.) We find
∑

b

µ2(b)b−3s = ζ(3s)
ζ(6s) ,

done.

Exercise 2

This is just a messy calculation. We somehow want to get of the (a, b)-symbol in the sum. We
do so by using that given a, b ∈ N, we find unique coprime numbers k, l with a = k(a, b) and
b = l(a, b). Now summing over all possible gcds d yields

∑
a,b

(a, b)
asbt

=
∑

d

d

ds+t

∑
k,l∈N coprime

k−sl−t = ζ(s+ t− 1)
∑
k,l

k−sl−t
∑

e|(k,l)
µ(e)

where we rephrased the coprimality condition on k and l using the trick from the last sheet.
Now we rewrite ∑

k,l

k−sl−t
∑

e|(k,l)
µ(e) =

∑
e

µ(e)
∑
k,l

(ke)−s(le)−t = ζ(s)ζ(t)
ζ(s+ t) ,

obtaining ∑
a,b

(a, b)
asbt

= ζ(s+ t− 1)ζ(s)ζ(t)
ζ(s+ t) .

Tracing through this calculation, we find that it is sufficient for absolute convergence to have
ℜ(s) > 1 and ℜ(t) > 1. These conditions are easily seen to be necessary too (the sub-sums with
a = 1 or b = 1 diverge otherwise).

Notes after correcting.
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• Even though it is easily seen that the double sum cannot converge absolutely whenever
(say) ℜ(s) ≤ 1, this does immediately follow from the divergence of the series in the ζ-
representation! The reason is that it is that we split the series in the first equality. It is
possible to split a convergent series into divergent ones, as for example∑

n∈N
0 =

∑
n∈N

(1 − 1) ̸=
∑

n

1 −
∑

n

1.

Exercise 3

1. We have
ψ(s) =

∑
n

n−s − 2
∑

n

(2n)−s

and
ψ̃(s) =

∑
n

n−s − 3
∑

n

(3n)−s.

2. Using the Leibniz criterion, we see that the series converge conditionally on the positive real
line, and thereby for ℜs > 0 by theorem (1.10). Alternatively, one can use (1.11) to see that
the abscissa of convergence is given by

σ0 = lim sup
N→∞

log
∣∣∣∑n≤N (−1)n

∣∣∣
logN = 0.

3. As both ψ and ψ̃ are holomorphic in ℜs > 0, ζ can only have a pole whenever (1 − 21−s)
and (1 − 31−s) vanish. But this is the case whenever

1 = 21−s = e(log 2)(1−s) ⇔ (log 2)(1 − s) ∈ 2πiZ

and
1 = 31−s = e(log 3)(1−s) ⇔ (log 3)(1 − s) ∈ 2πiZ.

4. If log 2/ log 3 = p/q was rational, we’d find that 2q = 3p, contradiction. Hence the two sets
(log 2)−1(2πiZ) and (log 3)−1(2πiZ) have intersection the set {0}. Thereby, ζ cannot have a
pole away from s = 1. There it has a pole from a theorem in the lecture, and it is a simple pole
as (21−s − 1) has a simple zero at s = 1.

Exercise 4

We know that the d-th cyclotomic polynomial Φd(x) has degree φ(d), and that ∏
d|n Φd(x) =

xn − 1. Hence ∑
d|n

φ(d) =
∑
d|n

deg Φd = deg

∏
d|n

Φd

 = deg(xn − 1) = n,

hence (by Möbius-inversion)

φ(n) = (µ ⋆ id)(n) =
∑
d|n

n

d
µ(d).
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Now we find ∑
n≤x

φ(n)/n =
∑
n≤x

1
n

∑
d|n

n

d
µ(d) =

∑
d≤x

µ(d)
d

∑
k:kd≤x

1 =
∑
d≤x

µ(d)
d

[
x

d

]
.

We write [x/d] = x/d+O(1) and use that µ(d) ∈ {−1, 0, 1}. This gives

∑
d≤x

µ(d)
d

[
x

d

]
=

∑
d≤x

µ(d)
d

x

d
+O

∑
d≤x

1
d

 =
∑
d≤x

µ(d)
d

x

d
+O(log x)

(by approximating the n-th harmonic number with the logarithm) and we have

∑
d≤x

µ(d)
d

x

d
= x

∞∑
d=1

µ(d)d−2 +O

x ∑
x<d<∞

d−2

 = xζ(2)−1 +O(1).

One can show the estimate ∑
x<d<∞ d−2 ≪ x−1 using the inequality

∑
x<d<∞

d−2 ≤
∫ ∞

x−1
t−2 dt = O((x− 1)−1) = O(x−1).

Done.

Notes after correcting.

• The convolution formula can also be obtained formally by writing

φ(n) =
∑

k≤n and (k,n)=1
1 =

∑
k≤n

∑
d|(k,n)

µ(d)

and reordering sums.
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