
Solution to Sheet 3.

Facts from multiplicative number theory.

Given some n = pe1
1 · · · per

r ∈ N, we want to investigate the structure of the multiplicative group
(Z/nZ)×. By the chinese remainder theorem we find

(Z/nZ)× ∼=
(

n∏
i=1

(Z/pei
i Z)

)×
∼=

n∏
i=1

(Z/pei
i Z)×,

so we really only care about the structure of (Z/peZ)×. There, the structure is given by

(Z/peZ)× ∼=


a cyclic subgroup of order φ(pe) if p is odd
⟨3⟩ if p = 2 and e ≤ 2
±⟨5⟩ ∼= Z/2Z × Z/2e−2Z if p = 2 and e ≥ 3.

A generator of F×
p , or more generally, a generator of (Z/peZ)× is called a root of unity. We have

the Legendre symbol, which for a ∈ Z and an odd prime p is given by

(
a

p

)
=


0 if p | a

(−1) if there is no solution mod p to x2 = a

1 otherwise.

It is multiplicative in a, hence it yields a character (Z/pZ)× → C×. The subgroup of quadratic
residues mod p is given by Ker

((
−
p

))
= ⟨ϖ2⟩ for ϖ a root of unity. Quadratic reciprocity states

that for two odd primes p, q, we have(
p

q

)
= (−1)

p−1
2 · q−1

2

(
q

p

)
,

and there are the supplementary laws(−1
p

)
= (−1)

p−1
2 and

(2
p

)
= (−1)

p2−1
8 .

Given a finite abelian group G, we define the group of characters of G as

Ĝ = HomAb(G,C×) = HomAb(G, S1).

Given a cyclic group G ∼= Z/nZ, there is an isomorphism G ∼= Ĝ given by a 7→ (1 7→ ζa
n),

where ζn is an n-th root of unity. As we also have Ĝ ⊕ Ĥ = Ĝ ⊕ H, this shows that there are
isomorphisms G ∼= Ĝ for all finite abelian groups1.

1The first isomorphism is the universal property of the direct sum: We have

HomAb(G ⊕ H,C×) ∼= HomAb(G,C×) ⊕ HomAb(H,C×).

Remember that every finite group is a finite product (equivalently, finite direct sum) of cyclic groups.
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Exercise 1 & 2.

1. Note that the real characters are exactly those χ : (Z/pZ)× → C× with χ2 = 1. As p is odd,
there are exactly two solutions to x2 = 1, hence there are exactly 2 real characters mod p, one
of which is the trivial one (induced by the principle character mod 1), and the other is given
by the legendre symbol. The same reasoning goes through mod pe for e ≥ 2 (the multiplicative
group is cyclic of even order), but now the characters are induced from characters mod p.

2. For n = 2r, we find again that the real Dirichlet characters are in bijection with the set
{x ∈ Z/nZ | x2 − 1 = 0}. By the structure of the multiplicative group given above, this set has
1 element if r = 1, it has 2 elements if r = 2 and 4 elements if r ≥ 3. We find:

• The multiplicative group of Z/2Z is trivial, so there is only the character given by 1 7→ 1,
which is induced by the principle character.

• On Z/4Z we have again the principle character and the primitive character χ−4 uniquely
defined via χ−4(−1) = −1.

• On Z/8Z we have the principle character, the one induced by χ−4 and the two characters
χ±8, where χ±8(3) = ∓1, χ±8(5) = −1 and χ±8(7) = ±1.

3. We inspect the map

µ : ̂(Z/rZ)× × ̂(Z/sZ)× → ̂(Z/nZ)× (χ1, χ2) 7→ χ1χ2.

We claim that this map is injective. Indeed, assume that we are given two characters χ1 mod
r and χ2 mod s such that for all m ∈ N,

χ(m) = χ1(m mod r)χ2(m mod s).

Then whenever we are given m ∈ N such that m ≡ 1 mod s, we find

χ(m) = χ1(m),

and similarly for χ2. But the chinese remainder theorem asserts that these equalities already
define χ1 and χ2 uniquely: For any a ∈ (Z/rZ)×, there is some m ∈ N such that m ≡ a mod r
and m ≡ 1 mod s. Now µ is an injective map of sets with the same cardinality, hence bijective.

It remains to show that χ1 and χ2 are primitive iff χ is. Suppose first that χ1 was not primitive,
i.e., has conductor d < r. Then we can write χ1 = χ̃χ0,r where χ̃ is a character mod d and χ0,r

is the principal character mod r. Now χ′ = χ̃χ2 is a character modulo ds and induces χ, since

χ = χχ0,rs = χ1χ2χ0,rs = χ̃χ0,rχ2χ0,rs = χ′χ0,rχ0,rs = χ′χ0,rs.

There is a neat way to now show the converse. Let φ2(n) denote the number of primitive
characters mod n. For any d | n, the set of primitive characters mod d is in bijection with the
characters mod n of conductor d, so we find

φ(n) = # ̂(Z/nZ)× =
∑
d|n

φ2(n) = (1 ⋆ φ2)(n),

implying that φ2 = µ ⋆ φ by moebius-inversion. Hence φ2 is multiplicative. We have shown
alrady that the inverse of µ restricts to a (necessarily) injective map

µ−1 : {primitive characters mod n} → {pr. characters mod r} × {pr. characters mod s}.
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By multiplicity of φ2, this is a injective map of sets of the same cardinality, therefore µ−1 is a
bijection, and we are done.

Alternatively we can calculate this directly. Assume that χ1 and χ2 are primitive. Choose a
character χ̃ mod d that induces χ, so we may write

χ1χ2 = χ̃χ0,rs = (χ̃1χ0,r)(χ̃2χ0,s),

where χ̃1 is a character of conducter d1 | r and χ̃2 is a character of conducter d2 | s. But by
uniqueness of χ1 and χ2, we find χ1 = χ̃χ0,r and χ2 = χ̃χ0,s, implying d = rs by primitivity of
χ1 and χ2.

4. Writing n = 2rq with q odd, we find that the number of primitive real characters mod n is
given by 

1 if r = 0 and q square-free,

0 if r = 1 and q square-free,

1 if r = 2 and q square-free,

2 if r = 3 and q square-free,

0 if r ≥ 4 or q not square-free.

5. Clearly the product of two fundamental discriminants (FDs) is again a FD, and we have
χD1D2 = χD1χD2 . Also, given a fundamental discriminant D with |D| = d1d2 and (d1, d2) = 1,
there are fundamental discriminants D1, D2 with di = ±Di and D1D2 = D. So we can reduce
to the case where |D| = pr is a prime power. As a first reality check, we find that if p is odd,
the only fundamental discriminant of this type is D = (−1)

p−1
2 p, in which case χD is given by

the unique real primitive character, given by (using quadratic reciprocity)

χD(q) =
(

(−1)(p−1)/2p

q

)
=
(

q

p

)
.

There are no FDs with |D| = 2 or |D| = 2r with r ≥ 4. If |D| = 4 there is one (D = −4), and
if n = 8 there are two (D = ±8). Using quadratic reciprocity and the supplementary laws, it is
easily seen that these are exactly the characters described above.
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