
Solutions to Sheet 6.

Problem 1

Okay, we just go through everyting. For ζ(s) we have degree d = 1, conductor N = 1, root
number η = 1, κ1 = 0 and hence L∞(s) = π−s/2Γ(s/2). For L(s, χ) with a primitive Dirichlet
character χ mod q > 1 we have degree d = 1, conductor N = q, root number η = i−κτ(χ)q−1/2,
κ1 = κ and L∞(s) = π−s/2Γ( s+κ

2 ) where κ = 0 if χ is even and κ = 1 if χ is odd.

The functional equation now reads as follows.

Theorem 1 (Approximate functional equation for ζ). Let G(u) be any even function which is
holomorphic and bounded in |ℜ(u)| < 4 and normalized by G(0) = 1. Let X > 0. Then for
0 < σ < 1 we have

ζ(s) =
∑

n

n−sVs

(
n

X

)
+ πs−1/2 Γ((1 − s)/2)

Γ(s/2)
∑

n

ns−1V1−s(nX) − R

where
Vs(y) = 1

2πi

∫
(3)

G(u)Γ((s + u)/2)
Γ(s/2) (y

√
π)−u du

u

and
R = πs/2

Γ(s/2)
G(1 − s)

1 − s
X1−s − πs/2

Γ(s/2)
G(−s)

−s
X−s.

Completed Dirichlet L-functions are entire, so we get rid of R. As above, in the following κ
depends on the parity of χ.

Theorem 2 (Approximate functional equation for Dirichlet L-functions). Let G(u) be any
even function which is holomorphic and bounded in |ℜ(u)| < 4 and normalized by G(0) = 1.
Let X > 0. Then for 0 < σ < 1 we have

ζ(s) =
∑

n

χ(n)n−sVs

(
n

X
√

q

)
+ ϵ(s)

∑
n

χ(n)ns−1V1−s

(
nX
√

q

)

where
Vs(y) = 1

2πi

∫
(3)

G(u)Γ((s + u + κ)/2)
Γ((s + κ)/2) (y

√
π)−u du

u

and
ϵ(s) = i−κτ(χ)q−sπs−1/2 Γ((1 − s + κ)/2)

Γ((s + κ)2) .

As for (3.11), we have for ζ that C(s) = C0(s) = |s + 2|, for Dirichlet L-functions we find
C0(s) = |s + κ| + 2 and C(s) = q(|s + κ| + 2). As an aside, the 2 here is quite arbitrary and is
only there to make sure everything works out when |s| is small. We can plug this into (3.11),
finding (with G(u) = eu2) that for ζ we have that

yaV (a)
s (y) ≪a,A

(
1 + y√

|s| + 2

)−A
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for ℜ(s) > 0 whereas for L(s, χ) we find

yaV (a)
s (y) ≪a,A

(
1 + y√

|s + κ| + 2

)−A

for ℜ(s) > −κ.

Lastly, the conditions for (3.12) are satisfied for both ζ(s) and L(s, χ), we have the convexity
bound

ζ(s) ≪ε,δ (|s| + 2)
1−σ

2 +ε

whenever |s − 1| ≥ δ (i.e., away from the pole) and similarly

L(s, χ) ≪ε (q |s + κ| + 2)
1−σ

2 +ε.

Again, it should be noted that the 2 is added artificially to have small |s| not mess everything
up. For large s, these vanish and we obtain (and should really read these as)

ζ(s) ≪ |s|
1−σ

2 +ε and L(s, χ) ≪ |qs|
1−σ

2 +ε .

Also, if we fix L, we can absorb the factor q into the implicit constant from ≪.

Problem 2

1. Calculating ζ(0). The simple pole of ζ(s) at s = 1 has residue 1, so we know that lims→1(s −
1)ζ(s) = 1. Writing the functional equation as ζ(s) = ∆(s)ζ(1 − s) gives

1 = lim
s→1

(s − 1)ζ(s) = lim
s→1

(s − 1)∆(s)ζ(0),

so we only need to evaluate the remaining term lims→1(s − 1)∆(s). We have

∆(s) =
Γ(1−s

2 )
Γ( s

2) πs−1/2.

It follows that ζ(0) = −1
2 as Γ(1/2) =

√
π and Γ((1 − s)/2) has residue −2 at 1 (think about

the Laurent expansion at 1 and remember that Γ has residue 1 at 0).

2. Showing that ζ(s) < 0 for s ∈ (0, 1). We have that

ζ(s) = s

s − 1 − s

∫ ∞

0
{t}t−s−1 dt.

This is negative. Hence ζ is negative in the interval [0, 1).

Problem 3

We want to follow the proof from (3.14) as closely as possible. The first difference is that we
sum over all characters, not just the primitive ones, but this does not make a difference: If we
know that ∑∗

χ(mod q)
|L(1/2, χ)|2 ≪ q1+ε
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(where the star in the sum means that we sum over primitive characters, this notation is quite
common), we can easily deduce∑

χ(mod q)
|L(1/2, χ)|2 =

∑
d|q

∑∗

χ(mod d)
|L(1/2, χ)|2 ≤ τ(q) max

d|q

∑∗

χ(mod d)
|L(1/2, χ)|2 ≪ q1+ε

as τ(q) the number of divisors of q, satisfies τ(q) ≪ qε. The L∞ factor occuring in Vs only
depends on the parity of χ, so we further split the sum into odd and even parts. We want to use
the approximate functional equation with X = 1, s = 1/2 and G(u) = eu2 as in (3.11). Let’s
check what happens. We find

L(1/2, χ) =
∑

n

χ(n)
n1/2 V1/2(n/

√
N) + ϵ(1/2)

∑
n

χ(n)
n1/2 V1/2(n/

√
N) + R

where

• R = 0 as the completed L-function Λ(s, χ) is entire.

• The root number ϵ(1/2) has absolute value 1.

• The terms involving V = V1/2 can be bounded by V (y) ≪A (1 + y)−A. For all A > 0.

Also note that both sums are equal in absolute value. This is not too complicated! We plug it
in, using this time that |a + b|4 ≤ 8(|a|4 + |b|4) (this can be seen using Hölder’s inequality for
example), obtaining

∑∗

χ(mod q) even
|L(1/2, χ)|4 ≤ 16

∑∗

χ(q) even

∣∣∣∣∣∑
n

χ(n)
n1/2 V (n/

√
q)
∣∣∣∣∣
4

.

Similar to the proof of (3.14), we can complete the sum to go over all characters and open up
the sum, obtaining a fourfold sum which we can simplify using orthogonality relations on sums
over characters. In short, we get

· · · ≤ 16
∑
χ(q)

∣∣∣∣∣∑
n

χ(n)
n1/2 V (n/

√
q)
∣∣∣∣∣
4

= 16
∑

n1,n2,m1,m2

Vn1Vn2V m1V m2

(n1n2m1m2)1/2

∑
χ(q)

χ(n1+n2−m1−m2), (1)

where we wrote Vn = V (n/
√

q). The sum over χ does not vanish iff n1n2 ≡ m1m2 (mod q),
where it equals φ(q). As the hint suggests, we glue together n1 and n2, m1 and m2, which
leaves us with the taks of bounding terms of the form

(V ∗ V )(n) =
∑

n1n2=n

Vn1Vn2 .

We find for any A ≥ 1

(V ∗ V )(n) ≪
∑

n1n2=n

(
1 + n1√

q

)−A(
1 + n2√

q

)−A

≤
∑

n1n2=n

(
1 + n

q

)−A

≪ε nε
(

1 + n

q

)−A

.

With A = 1 + ε we calculate

(1) ≪ φ(q)
∑
n,m

(V ⋆ V )(n)(V ⋆ V )(m)
(nm)1/2 ≪ φ(q)

∑
n

∑
n≡m≥n

(1 + m
q )−1(1 + n

q )−1(mn)−1/2, (2)

and upon applying the bound φ(q) < q this is exactly the sum that arises in the end of the
proof of (3.14)! (I might add lines on how to bound this once I have time).
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