Solutions to Sheet 7.

Problem 1

a - 2p)

b - 3p)

¢ - 3p)

d - 2p)

We have g(z) < 2=t as ¢ — 0 and g(z) < =z~ %) as ¢ — oco. Hence in
—u + av < Re(s) < —u + bv the mellin transform g exists and is given by
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Now the RHS defines a holomorphic function in —u + a'v < Re(s) < —u + b'v.

Of course, knowing bounds for f does not imply any bounds for f’. But knowing that we
can derive f, we can make use of partial integration. We have

/f 51dx—[f } _7/ f(z)z® dx

By assumption, the boundary terms vanish for a < Re(s) < b, and the integral on the
RHS exists (if this is not clear, try to first approximate the integrals by truncated ones
from 1/T to T and let T'— o0). Hence g (with g = f’) exists in a +1 < Re(s) < b+ 1
(note the shift s — s+ 1 in the integral). Same argument as before gives continuation of
gtod +1<Res<bV +1.

By assumption f has compact support, so the Mellin Transform exists everywhere and
the same holds for the derivatives. We make use of what we showed in b) repeatedly,
obtaining
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I'(s+N)

g(s + N) = (1) g(s+N)

where g = f). The first [-factor behaves (for fixed real part and large imaginary part
of 5) like O(|s| ™), so it remains to show that §(s) is bounded with Im s — co. But the
integral from the mellin transform can be bounded in absolute values, as

lg(s)] S/ ‘g(x)ms_l‘ dz <</’9($)!$Re(s)_ldx.
0

This is convergent, and independent of Im(s).

Calculation:
m(s):/ (f % h)(z)z"~ 1dx—/ / FOh(z/t)t " dta" " da
0
- [ T FOh)e Ty dt dy,

as desired. We made use of the substitution y = z/t, i.e. dy =¢"!du.

Problem 2&3

a - 15p) We want to apply Perron. Remember that we showed earlier that the Dirichlet series

attached to the characteristic function on the set of squarefull numbers is given by

¢(25)¢(3s)
¢(6s) -



Just as in one of the examples from the lecture, we apply Perron with ¢ = 1 + 1/logz and
T =z for some fixed « € (0,1). The absolute value of the coefficients is < 1 and we obtain

c+iT d

n<x sqfull

We want to shift the contour to the left and pick up residues along the way. The most important
tool to bound the vertical contribution is the moment bound, and this requires the real part
of the argument to be at least . Hence we shift to Res = 1. The factor (7!(6s) is still
holomorphic here, so we only pick up the residues from ¢(2s) and ((3s). We obtain

1=
n<x sqfull

C(3/2) 170 €(2/3) 13 VASIT - UAHT pen T\ ((26)¢(35) |, ds B
¢(3) x4+ ((2) z —i—(/c_iT + i +/1/4+iT C(63) T . +O(T "zlogx).

First, note that (~!(s) is bounded in Res > 1 + 6, as

¢(2+26)

<(1+5) < 1.
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So we disregard this factor from now on. Let us first start with the vertical part. Here we have
|z°| = 2/, so the contribution is bounded by

T . .
U [T 1C(L/2 4+ 2i0)¢(3/4 + 3it)|
< /0 14+ it dt.

We prove that the integral is bounded by x°. By splitting the integral into logx dyadic pieces
[M,2M] for M < T. It suffices to show that

/2M C(1/2 + 2it)¢(3/4 + 3it)|

dt < MHe.
M 1/4+it

The denumerator is (throughout) of size > M, so we really only need to show that

2M
/M IC(1/2 + 2t)¢(3/4 + 3it)| dt < M® < T*

This is an immediate consequence of Cauchy-Schwartz and the moment bounds. Hence we can
conclude

/T |C(1/2 + 2it)¢(3/4 + 3it)] dt
0 1/4 +it
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Next, we focus on the horizontal parts. Here, s~' <« 7!, so the contributions become

(& (&
<T7V [ |C@2(0+iT)CB3(0 +iT)| do < T~ [ max(1/2=00)pmax(1/2=50/2.0) y0 4.
1/4 1/4
This requires some bookkeeping, but splitting this into the parts (1/4,1/3), (1/3,1/2) and
(1/2,¢) one quickly verifies that no term contriibutes more that z'*¢. To this end, we showed
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The claim follows upon setting 7' = z3/4.

b - 5p) The good thing with smooth weights is that their mellin transforms usually decay
quickly along vertical lines and we do not have to worry about cutting off the integral. Perron’s
formula reveals with ¢ > 1/2

e _ L ((25)¢(3s) s
Z e —%/(C)C(Gs)xf(s)ds.

n squarefull

As T vanishes rapidly along vertical lines, we can shift the contour to Re s = 1/6 +¢ and obtain

L _16B/2) e 16(2/3) g5 1 / C25)6(35) oy .
(1/6+¢)

T2 ((3) 3 ¢(2) 2i ((6s)

The integral is absolutely convergent, hence gives an error of size O(azl/ 6+e),

Remark: We will later prove that ((s) does not have zeroes in some neighbourhood of the line
Re s = 1, which in particular implies that there are no zeroes on the line itself. Hence we can
get even shift the contour onto Re s = 1/6, killing the +e.

Problem 4

a - 6p) Every finite abelian group can be decomposed as a product of cyclic groups of prime-
power-order. Hence the number of isomorphism classes of abelian groups of order n gives a
multiplicative arithmetic function

a:N—=N, n— #({abelian groups of order n}/ =).

If n = p" is a prime power, we find that a(n) is given by the number of (additive) partitions of
r. Indeed, to a partition
l-a1+2-a2+3-a3+---=r

we can associate a group (Z/pZ)* x (Z/p*Z)* x (Z/p*Z)* x ... of order p", and vice versa.
One quickly verifies (at least formally), that

Za(n)x” = (l+z4+22+.. )A4+22+2r+. YA +23+2%4+..) -
n=1
and substituting x = p~* for varying p yields the desired formula
> a@mn* =TT IO -5 = ] ¢t
n=1 r=1

p r=1

The last step might demand clearification. Remember that a product []a, with a, # 0 con-
verges absolutely to something # 0 iff the sum Y |a,, — 1| converges absolutely. In Res > 1+ 9
we have the uniform bound

o0
1= (rs)| < D0 <5277,
n=2

so that which shows that indeed, the product converges absolutely and locally uniformly in
Res > 1.



b - 4p) The heuristic goes as follows. Let F' be the Dirichlet series attached to a. By the
above, F' is a holomorphic function for s > 1, but by the continuation of the first {-factor, we
find that F has a continuation to a meromorphic function on Res > 1/2. (Aside: We can apply
the functional equation to as many (-factors as we want, yielding continuations to Res > 1/n
for arbitrarily large n € N. But F' can never be meromorphically continued to all of C. This
is because there are poles at s = 1,1/2,1/3,..., which by the identity theorem implies that
F~! =0.) Now Perron’s Formula reads

Z a(n) = L F(S)JJSE,

n<e 271 J(c) S

and upon shifting the contour to 1 — & we obtain

27i s

Z a(n) = zRess=1 F(s) + L /(1—5) F(s):psg.

n<lz

The residue is given by C' = ((2){(3) - - -, and we’d hope that we would be able to approximate
the integral by something of size o(x).

Proving the asymptotic. Proving the asymptotic is quite challenging, as we would have to
find some bound on a(n) to apply (4.7). The convergence of Y, a(n)n™*° for Re(s) > 1 gives
a(n) < n'*¢) but there is no trivial way to get anything beyond that. But it turns out we
don’t need such bounds! Note that we really need to include a bound of a(n) in (4.7) because
we try to approximate a function that "jumps" (the LHS) with a function that is continuous in
x (the integral, at least as long as T' = T'(x) is continuous in z). But if we decide to inspect
the approximation away from the jumps of the LHS, we might be able to prove an error not
involving terms of the form O(max,~ |ay|). This idea is sketched in the following.

Using a modified version of (4.7). The probably more sensible way to do this is to use a
modified version of (4.7): If we assume x € 3 + N (more generally, « € [6,1 — 6] + N works for
0 < 0 < 1/2), we can copy the proof of (4.7), but the first summand A, can be avoided. This
gives (with the same terminology as in (4.7)) the statement
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We can now follow the same strategy as usual, and in the end realize that T' = 2 can be chosen
an arbitrary power of z, which should ultimately yield a asymptotic with error O(z'/2%¢). (You
will need A, = max,, |a,| < x'7¢.) This is left as an exercise :)

The following solution introduces a new idea. We sacrifice a bit of error size, but get a smooth
ride when moving the integral to the left in exchange. You will realize we almost don’t have to
worry about messy calculations at all!

Proving the asymptotic using Cesaro-weights. Instead of trying to avoid the jumps, we
could also try to smooth out the LHS of (4.7). Instead of bounding

So(z) = Z a(n),

n<x

we try to bound

Si(z) = 3 a(n)(z —n) = / " So(y) dy.

n<zx



(These weights are called Cesaro weights). We hope to recover information about Sy afterwards.
Integrating Perron’s formula, we find that

Si(x) = % /(C) F(s)xSHI,(I;(j_)Q) ds.

The D-factor is essentially bounded by |s| ™2, at least for |s| > 2. Whenever o > 1/2 + 8§ and
|t| > 1 we find

F(o+it) < [C(s)| C(1 +26)C(3/2 +3/28) - < |t] 2" T= 6L,

Hence we can shift the contour to Res = 1/2 4 §, pick up a pole and the remaining integral
remains absolutely convergent. In formulas,

$1(x) 20+/ Pt L0 Ty 0y

) = — S)x ————ds = — slx .

1 2 (1/2+9) I'(s+2) 2

Nice, this at least shows that there is an asymptotic on average. But how can we make use
of this? We also showed that the Lindelof-Hypothesis is true on average, but we are far from
proving the Lindel6f-Hypothesis in general! What plays in our favor here is that Sy is non-
decreasing. Denote by Ey(x) the error function Sy(z) — Cz, and define E; as the integral of
Ey. Note that we have Ej(x) < £%/2%¢ by the above. We also make a choice of some Q = z®
for a € [0, 1] and get (using monotonicity of Sp)

Eiw+Q) - Ei@) = | " Bo(1) dt > Q(So() — Cr — CQ) = QEy() + O(Q?).

T

But we also know that Ey(z + Q) — Fy(z) = O(2%/%¢), implying
QEo(z) < O(2*** + @?).

This shows Ey(z) < O(z%/**¢) once we choose Q = x3/%. A similar lower bound can be
established by inspecting [;” o Eo(t)dt (exercise, haha). This proves So(z) = Cz + O(z3/4+e).
This really is remarkable, as this in particular implies that a(n) < n3/4*¢ which is a bound we
did not know existed beforehand. Even more, this followed only from a bound on the vertical
growth of F'(s) and the fact that a(n) > 0. Also note that we by did not do as good as we could
have! We could have shifted further to the left and picked up more residues.
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