
Solutions to Sheet 7.

Problem 1

a - 2p) We have g(x) ≪ x−(−u+av) as x → 0 and g(x) ≪ x−(−u+bv) as x → ∞. Hence in
−u + av < Re(s) < −u + bv the mellin transform ĝ exists and is given by

ĝ(s) =
∫ ∞

0
xuf(xv)xs dx

x
= v−1

∫ ∞

0
f(y)y(s+u)/v−1 dy = v−1f

(
s + u

v

)
Now the RHS defines a holomorphic function in −u + a′v < Re(s) < −u + b′v.

b - 3p) Of course, knowing bounds for f does not imply any bounds for f ′. But knowing that we
can derive f , we can make use of partial integration. We have∫ ∞

0
f(x)xs−1 dx =

[
f(x)xs

s

]∞

0
− 1

s

∫ ∞

0
f ′(x)xs dx

By assumption, the boundary terms vanish for a < Re(s) < b, and the integral on the
RHS exists (if this is not clear, try to first approximate the integrals by truncated ones
from 1/T to T and let T → ∞). Hence ĝ (with g = f ′) exists in a + 1 < Re(s) < b + 1
(note the shift s 7→ s + 1 in the integral). Same argument as before gives continuation of
ĝ to a′ + 1 < Re s < b′ + 1.

c - 3p) By assumption f has compact support, so the Mellin Transform exists everywhere and
the same holds for the derivatives. We make use of what we showed in b) repeatedly,
obtaining

f̂(s) = (−1)N

s(s + 1) . . . (s + N − 1) ĝ(s + N) = (−1)N Γ(s)
Γ(s + N) ĝ(s + N)

where g = f (N). The first Γ-factor behaves (for fixed real part and large imaginary part
of s) like O(|s|−N ), so it remains to show that ĝ(s) is bounded with Im s → ∞. But the
integral from the mellin transform can be bounded in absolute values, as

|g(s)| ≤
∫ ∞

0

∣∣∣g(x)xs−1
∣∣∣ dx ≪

∫
|g(x)| xRe(s)−1 dx.

This is convergent, and independent of Im(s).

d - 2p) Calculation:

f̂ ⋆ h(s) =
∫ ∞

0
(f ⋆ h)(x)xs−1 dx =

∫ ∞

0

∫ ∞

0
f(t)h(x/t)t−1 dtxs−1 dx

=
∫ ∞

0
f(t)h(y)ts−1ys−1 dt dy,

as desired. We made use of the substitution y = x/t, i.e. dy = t−1 dx.

Problem 2&3

a - 15p) We want to apply Perron. Remember that we showed earlier that the Dirichlet series
attached to the characteristic function on the set of squarefull numbers is given by ζ(2s)ζ(3s)

ζ(6s) .
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Just as in one of the examples from the lecture, we apply Perron with c = 1 + 1/ log x and
T = xα for some fixed α ∈ (0, 1). The absolute value of the coefficients is ≤ 1 and we obtain

∑
n≤x sqfull

1 = 1
2πi

∫ c+iT

c−iT

ζ(2s)ζ(3s)
ζ(6s) xs ds

s
+ O(T −1x log x).

We want to shift the contour to the left and pick up residues along the way. The most important
tool to bound the vertical contribution is the moment bound, and this requires the real part
of the argument to be at least 1

2 . Hence we shift to Re s = 1
4 . The factor ζ−1(6s) is still

holomorphic here, so we only pick up the residues from ζ(2s) and ζ(3s). We obtain∑
n≤x sqfull

1 =

ζ(3/2)
ζ(3) x1/2 + ζ(2/3)

ζ(2) x1/3 +
(∫ 1/4−iT

c−iT
+
∫ 1/4+iT

1/4−iT
+
∫ c+iT

1/4+iT

)
ζ(2s)ζ(3s)

ζ(6s) xs ds

s
+ O(T −1x log x).

First, note that ζ−1(s) is bounded in Re s > 1 + δ, as∣∣∣ζ−1(s)
∣∣∣ =

∏
p

∣∣1 − p−s
∣∣ ≤

∏
p

(1 + p−1−δ) = ζ(2 + 2δ)
ζ(1 + δ) ≪δ 1.

So we disregard this factor from now on. Let us first start with the vertical part. Here we have
|xs| = x1/4, so the contribution is bounded by

≪ x1/4
∫ T

0

|ζ(1/2 + 2it)ζ(3/4 + 3it)|
1/4 + it dt.

We prove that the integral is bounded by xε. By splitting the integral into log x dyadic pieces
[M, 2M ] for M < T . It suffices to show that∫ 2M

M

|ζ(1/2 + 2it)ζ(3/4 + 3it)|
1/4 + it dt ≪ M1+ε.

The denumerator is (throughout) of size ≫ M , so we really only need to show that∫ 2M

M
|ζ(1/2 + 2it)ζ(3/4 + 3it)| dt ≪ M ε ≪ T ε

This is an immediate consequence of Cauchy-Schwartz and the moment bounds. Hence we can
conclude∫ T

0

|ζ(1/2 + 2it)ζ(3/4 + 3it)|
1/4 + it dt

≤
(∫ 1

0
+
∫ 2

1
+ · · · +

∫ 2⌊log2(T )⌋+1

2⌊log2(T )⌋

)
|ζ(1/2 + 2it)ζ(3/4 + 3it)|

1/4 + it dt ≪ log2(T )T ε ≪ T ε.

Next, we focus on the horizontal parts. Here, s−1 ≪ T −1, so the contributions become

≪ T −1
∫ c

1/4
|ζ(2(σ + iT ))ζ(3(σ + iT )| dσ ≪ T −1

∫ c

1/4
T max(1/2−σ,0)T max(1/2−3σ/2,0)xσ dσ.

This requires some bookkeeping, but splitting this into the parts (1/4, 1/3), (1/3, 1/2) and
(1/2, c) one quickly verifies that no term contriibutes more that x1+ε. To this end, we showed

∑
n≤x sqfull

1 = ζ(3/2)
ζ(3) x1/2 + ζ(2/3)

ζ(2) x1/3 + O

(
x1+ε

T
+ x1/4+ε

)
.
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The claim follows upon setting T = x3/4.

b - 5p) The good thing with smooth weights is that their mellin transforms usually decay
quickly along vertical lines and we do not have to worry about cutting off the integral. Perron’s
formula reveals with c > 1/2

∑
n squarefull

e−n/x = 1
2πi

∫
(c)

ζ(2s)ζ(3s)
ζ(6s) xsΓ(s) ds.

As Γ vanishes rapidly along vertical lines, we can shift the contour to Re s = 1/6 + ε and obtain

· · · = 1
2

ζ(3/2)
ζ(3) x1/2 + 1

3
ζ(2/3)
ζ(2) x1/3 + 1

2πi

∫
(1/6+ε)

ζ(2s)ζ(3s)
ζ(6s) xsΓ(s) ds.

The integral is absolutely convergent, hence gives an error of size O(x1/6+ε).

Remark: We will later prove that ζ(s) does not have zeroes in some neighbourhood of the line
Re s = 1, which in particular implies that there are no zeroes on the line itself. Hence we can
get even shift the contour onto Re s = 1/6, killing the +ε.

Problem 4

a - 6p) Every finite abelian group can be decomposed as a product of cyclic groups of prime-
power-order. Hence the number of isomorphism classes of abelian groups of order n gives a
multiplicative arithmetic function

a : N → N, n 7→ #({abelian groups of order n}/ ∼=).

If n = pr is a prime power, we find that a(n) is given by the number of (additive) partitions of
r. Indeed, to a partition

1 · a1 + 2 · a2 + 3 · a3 + · · · = r

we can associate a group (Z/pZ)a1 × (Z/p2Z)a2 × (Z/p3Z)a3 × . . . of order pr, and vice versa.
One quickly verifies (at least formally), that

∞∑
n=1

a(n)xn = (1 + x + x2 + . . . )(1 + x2 + x4 + . . . )(1 + x3 + x6 + . . . ) · · ·

and substituting x = p−s for varying p yields the desired formula
∞∑

n=1
a(n)n−s =

∏
p

∞∏
r=1

(1 − p−rs)−1 =
∞∏

r=1
ζ(rs).

The last step might demand clearification. Remember that a product
∏

an with an ̸= 0 con-
verges absolutely to something ̸= 0 iff the sum

∑
|an − 1| converges absolutely. In Re s > 1 + δ

we have the uniform bound

|1 − ζ(rs)| ≪
∞∑

n=2
nr(−1−δ) ≪δ 2−r,

so that which shows that indeed, the product converges absolutely and locally uniformly in
Re s > 1.
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b - 4p) The heuristic goes as follows. Let F be the Dirichlet series attached to a. By the
above, F is a holomorphic function for s > 1, but by the continuation of the first ζ-factor, we
find that F has a continuation to a meromorphic function on Re s > 1/2. (Aside: We can apply
the functional equation to as many ζ-factors as we want, yielding continuations to Re s > 1/n
for arbitrarily large n ∈ N. But F can never be meromorphically continued to all of C. This
is because there are poles at s = 1, 1/2, 1/3, . . . , which by the identity theorem implies that
F −1 = 0.) Now Perron’s Formula reads

∑
n≤x

a(n) = 1
2πi

∫
(c)

F (s)xs ds

s
,

and upon shifting the contour to 1 − ε we obtain

∑
n≤x

a(n) = xRess=1F (s) + 1
2πi

∫
(1−ε)

F (s)xs ds

s
.

The residue is given by C = ζ(2)ζ(3) · · · , and we’d hope that we would be able to approximate
the integral by something of size o(x).

Proving the asymptotic. Proving the asymptotic is quite challenging, as we would have to
find some bound on a(n) to apply (4.7). The convergence of

∑
n a(n)n−s for Re(s) > 1 gives

a(n) ≪ n1+ε, but there is no trivial way to get anything beyond that. But it turns out we
don’t need such bounds! Note that we really need to include a bound of a(n) in (4.7) because
we try to approximate a function that "jumps" (the LHS) with a function that is continuous in
x (the integral, at least as long as T = T (x) is continuous in x). But if we decide to inspect
the approximation away from the jumps of the LHS, we might be able to prove an error not
involving terms of the form O(maxn∼x |an|). This idea is sketched in the following.

Using a modified version of (4.7). The probably more sensible way to do this is to use a
modified version of (4.7): If we assume x ∈ 1

2 + N (more generally, x ∈ [δ, 1 − δ] + N works for
0 < δ < 1/2), we can copy the proof of (4.7), but the first summand Ax can be avoided. This
gives (with the same terminology as in (4.7)) the statement

∑
n≤x

an = 1
2πi

∫ c+iT

c−iT

∑
n∈N

an

ns
xs ds

s
+ O

(
xc

T

∑
n

|an|
nc

+ Ax
x log x

T

)
.

We can now follow the same strategy as usual, and in the end realize that T = xα can be chosen
an arbitrary power of x, which should ultimately yield a asymptotic with error O(x1/2+ε). (You
will need Ax = maxn∼x |an| ≪ x1+ε.) This is left as an exercise :)

The following solution introduces a new idea. We sacrifice a bit of error size, but get a smooth
ride when moving the integral to the left in exchange. You will realize we almost don’t have to
worry about messy calculations at all!

Proving the asymptotic using Cesàro-weights. Instead of trying to avoid the jumps, we
could also try to smooth out the LHS of (4.7). Instead of bounding

S0(x) =
∑
n≤x

a(n),

we try to bound
S1(x) =

∑
n≤x

a(n)(x − n) =
∫ x

1
S0(y) dy.
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(These weights are called Cesàro weights). We hope to recover information about S0 afterwards.
Integrating Perron’s formula, we find that

S1(x) = 1
2πi

∫
(c)

F (s)xs+1 Γ(s)
Γ(s + 2) ds.

The Γ-factor is essentially bounded by |s|−2, at least for |s| > 2. Whenever σ > 1/2 + δ and
|t| > 1 we find

F (σ + it) ≪ |ζ(s)| ζ(1 + 2δ)ζ(3/2 + 3/2δ) · · · ≪ |t|
1−σ

2 +ε δ−1.

Hence we can shift the contour to Re s = 1/2 + δ, pick up a pole and the remaining integral
remains absolutely convergent. In formulas,

S1(x) = x2

2 C +
∫

(1/2+δ)
F (s)xs+1 Γ(s)

Γ(s + 2) ds = x2

2 C + Oδ(x3/2+δ).

Nice, this at least shows that there is an asymptotic on average. But how can we make use
of this? We also showed that the Lindelöf-Hypothesis is true on average, but we are far from
proving the Lindelöf-Hypothesis in general! What plays in our favor here is that S0 is non-
decreasing. Denote by E0(x) the error function S0(x) − Cx, and define E1 as the integral of
E0. Note that we have E1(x) ≪ x3/2+ε by the above. We also make a choice of some Q = xα

for α ∈ [0, 1] and get (using monotonicity of S0)

E1(x + Q) − E1(x) =
∫ x+Q

x
E0(t) dt ≥ Q(S0(x) − Cx − CQ) = QE0(x) + O(Q2).

But we also know that E1(x + Q) − E1(x) = O(x3/2+ε), implying

QE0(x) ≤ O(x3/2+ε + Q2).

This shows E0(x) ≤ O(x3/4+ε) once we choose Q = x3/4. A similar lower bound can be
established by inspecting

∫ x
x−Q E0(t) dt (exercise, haha). This proves S0(x) = Cx + O(x3/4+ε).

This really is remarkable, as this in particular implies that a(n) ≪ n3/4+ε, which is a bound we
did not know existed beforehand. Even more, this followed only from a bound on the vertical
growth of F (s) and the fact that a(n) ≥ 0. Also note that we by did not do as good as we could
have! We could have shifted further to the left and picked up more residues.
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