
Solutions to Sheet 8.

Problem 1

a-4p) Look at sheet 5.

b-6p) The approximation in (4.9) reads∑
n≤x

dk(n) = xPk(log x) +O(x1−δ).

Reading the proof reveals that the main term is given by the residue

R := Ress=1
ζk(s)xs

s
= Ress=1Fk(s),

where for convenience Fk(s) := ζk(s)xs

s . Of course ζk(s) has a singularity of degree k at 1, and
we only need to calculate the (−1)st term of the Laurent expansion of F at 1. We have the
Taylor expansions

1
s

=
∞∑

n=0
(−1)n(s− 1)n = 1 − (s− 1) + (s− 1)2 +O((s− 1)3)

and

xs =
∞∑

n=0

x(log x)n

n! (s− 1)n = x+ x(log x)(s− 1) + 1
2x(log x)2(s− 1)2 +O((s− 1)3).

Let an denote the coefficients of the Laurent series of ζ at 1, i.e.

ζ(s) =
∞∑

n=−1
an(s− 1)n.

Calculating P2 and P3 now is pure calculation.

Calculating P2. We find

ζ2(s) =

 ∞∑
n=−1

ans
n

2

= a2
−1(s− 1)−2 + 2a−1a0(s− 1)−1 +O(1).

We multiply this with the Taylor series above and find that the coefficient of (s− 1)−1 is given
by

2a−1a0x+ a2
−1(x log x− x) = x(a2

−1 log x+ 2a−1a0 − a2
−1).

Remark. It is possible to show by elementary means that
∞∑

n≤x

d2(n) = x log x+ (2γ − 1)x+O(x1/2),

which shows that a0 = γ. (I just realized that a−1 = 1 is already known haha, but we could
probably also derive this with a similar approach and k = 1). This shows

P2(X) = X + 2a0 − 1.
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Calculating P3. We find similarly to above

ζ3(s) = (s− 1)−3 + 3a0(s− 1)−2 + 3(a2
0 + a1)(s− 1)−1 +O(1).

and again use this to figure out the coeffitient of (s−1)−1 in the Laurent expansion of F3 around
s = 1. We find that this coefficient is given by

3(a2
0 + a1)x+ 3a0x(log x− 1) + x((log x)2 − log x+ 1)

= x(1
2(log x)2 + (log x)(3γ − 1) + 3(γ2 + a1 − γ) + 1),

i.e.
P3(X) = 1

2x
2 + (3γ − 1)x+ 3(a1 + a2

0 − a0) + 1.

Problem 2

a) To calculate ζ ′(0), we make use of the functional equation, in the form

ζ(1 − s) = ζ(s) · 2Γ(s)
(2π)s

sin((π(1 − s)/2).

(This can be derived from the usual functional equation using the reflection formula Γ(z)Γ(1 −
z) = π

sin(πz) . For s close to 1 we find

(s− 1)ζ(s)Γ(s) = 1 +O((s− 1)2),

and
sin(π(1 − s)/2) = −π

2 (s− 1) +O((s− 1)3).

Hence
ζ(1 − s) = − π

(2π)s
+O((s− 1)2) = −1

2 − 1
2 log(2π)(s− 1) +O((s− 1)2).

This gives ζ ′(0) = − log 2π
2 . We now insert this into (5.2). For L(s) = ζ(s), this reads as

−ζ ′(s)
ζ(s) = − log π

2 + 1
2

Γ′(s/2)
Γ(s/2) − b+ 1

s
+ 1
s− 1 −

∑
ρ̸=0,1

( 1
s− ρ

+ 1
ρ

)
.

Taking the logarithmic derivative of the recurrece relation Γ(s+ 1) = sΓ(s) reveals

Γ′(s+ 1)
Γ(s+ 1) = 1

s
+ Γ′(s)

Γ(s) .

We can use this to simplify our equation, leaving us with

−ζ ′(s)
ζ(s) = − log π

2 + 1
2

Γ′(s/2 + 1)
Γ(s/2 + 1) − b+ 1

s− 1 −
∑

ρ ̸=0,1

( 1
s− ρ

+ 1
ρ

)
.

When inserting s = 0, this sum vanishes, and we find

−ζ ′(0)
ζ(0) = − log π

2 + 1
2

Γ′(1)
Γ(1) − b− 1.

This proves the claim, as we know ζ(0) = −1
2 , Γ(1) = 1 and the values for ζ ′ and Γ′ from above.
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Remark. The formula Γ′(1) = −γ can be derived from the Weierstraß product

1
Γ(z) = zeγz

∞∏
j=1

(
1 + z

j

)
e−z/j

by taking logarithmic derivatives on both sides and inserting z = 1.

b) This statement is false, but of course, we are supposed to show |Im(ρ)| ≥ 6 for all the
non-trivial roots of the zeta function. By (5.3a), we have that

−b = − Re b =
∑

ρ

Re(1
ρ).

The idea is that if Im ρ1 was small, then this sum would be so large that this equality cannot
hold (remember that b = −0.023 is quite small). Let ρ = σ+ it be a root with smallest possible
imaginary value. Note that with ρ, we also have roots 1 − σ ± it and σ − it, so we may assume
that σ ≥ 1

2 and that t > 0. As all contributions in the sum of (5.3a) are positive, we find

−b ≥ 1
σ + it + 1

σ − it = 2σ
σ2 + t2

≥ 1
1 + q2 .

This shows t ≥
√

−b−1 − 1 ≈ 6.5036.

Problem 3

a-5p) The "only" thing left to made precise is the contour shift. The main ingrediants are (5.3b)
and (5.3c).

Just for convenience, let’s summarize the bounds we need for ζ′

ζ :

ζ ′

ζ
(s) =


O(1) Re s ≥ 2,
O(log |s|) Re s ≤ −1

2 , |s+ 2m| ≥ 1
4 for all m ∈ N,∑

|ρ−s|≤1
1

s−ρ +O(1 + log |s|), −1 ≤ Re s ≤ 3.

The first bound follows from ζ′

ζ (s) =
∑

n Λ(n)n−s, the second part follows from the first bound,
the functional equation and Stirling’s formula. The third part is (5.3c).

By (5.3b), there are approximately log T roots of the zeta-function with imaginary part close
to T (i.e., |T − Im ρ| ≤ 1). Hence given some n ∈ Z, the pigeonhole principle assures that it
is possible to find some T = Tn with |n− T | ≤ 1 and minρ |T − Im ρ| ≤ 1

log|n| . Together with
(5.3c), this gives that ζ′

ζ (σ + iT ) ≪ (log |T |)2 on that line.

The plan is now to choose some large n, and shifting the truncated integral

− 1
2πi

∫ 2+in

2−in

ζ ′

ζ
(s)ω̂(s) ds (1)

to Re s = −1/2. This leaves us with the exercise to bound the horizontal integrals along the
segments [2 ± in,−1/2 ± in]. By the rapid decay of ω̂ and the bounds for ζ ′/ζ, changing the
boundaries of the integral in (1) from [2 − in, 2 + in] to [2 − iTn, 2 + iTn] comes only with a small
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cost of o(1). So we may also assume that uniformly ζ(σ + iTn) ≪ (logn)2 along the horizontal
segments. This justifies the first contour shift, and we obtain

∑
n

Λ(n)ω(n) = 1
2πi

∫ 2+in

2−in

ζ ′(s)
ζ(s) ω̂(s) ds+ o(1)

=
∑

|Im ρ|≤Tn

ω̂(ρ) + 1
2πi

∫ −1/2+iTn

−1/2−iTn

ζ ′(s)
ζ(s) ω̂(s) ds+ o(1).

We may let n → ∞, obtaining

∑
n

Λ(n)ω(n) −
∑

ρ

ω̂(ρ) =
∫

(−1/2)

ζ ′(s)
ζ(s) ω̂(s) ds.

In the proof of (4.4c) we can abuse the fact that Supp(ω) ⊂ [2,∞) to show that ω̂(s) ≪ 2−s

|Im(s)|N

for all N . This shows the bound∫
(−A+1/2)

ζ ′(s)
ζ(s) ω̂(s) ds ≪ 2−A,

justifying the shift Re s → −∞.

b-5p) The observation is that this function has large negative peaks at the primes , and when
n = pk is a prime power (to be fair, withouth knowing the explicit formula, this would be
hard to guess). Although the solution will (implicitely) assume the Riemann conjecture, this
illustrates the fact that ζ knows everything about the primes.

Okay, let’s analyze what’s happening here. First, we have

cos(γj log x) = Re(eiγj log x) = Re(xiγj ),

so we are plotting the real part of the sum of xiγ over the first few zeroes. If we want to interpret
this as a sum

∑
ρ ω̂(ρ), we would like to choose ω in way such that ω̂(1/2 + iγ) ≈ xiγ for the

zeroes we want to consider, and ω̂ decaying rapidly after that range (ignoring the contribution
of the trivial zeroes).

Apparently (not clear to me how to come up with this but hey it works) a convenient seems to
be

ω̂(1/2 + iγ) = xiγ exp(−(γ/S)2) = xs− 1
2 exp

((
s− 1/2
S

)2)
,

as this vanishes quickly once γ > S. We choose S to be a parameter roughly of the size of the
largest zero we want to consider, which in our case is γ30 ≈ 100. That’s why we choose S = 100.
We will later show that the weight

ω(y) = ωS,x(y) = S

2(πy)1/2 exp
(

−
(
S

2 log
(
y

x

))2
)

is the inverse Mellin-transform of ω̂. Now this is large if the part in the exponential vanishes,
i.e., if x ≈ y. On the other side, if y is not close to x then log(y/x) becomes large (say of size
≈ 10

S ), then the factor exp(−S2/4 log(y/x)2) makes ω decay quickly. So at least for x not too
large (for large x we need a further distance between y and x to make log(y/x) become large),
ω essentially looks like a peak at y = x. We are now ready to explain what’s going on. With
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the explicit formula (which we are technically not even allowed to use as ω is not compactly
supported, but whatever), we find

∑
n

Λ(n)ωS,x(n) ≈ −
∑

|Im ρ|≤S

ω̂(ρ) ≈
S∑

j=1
cos(γj log x).

If now x ≈ pk is close to a prime power, the LHS is ≈ Λ(n) S
y1/2 , large. If not, there is no term

on the LHS that contributes much, so we would expect the RHS to be small.

Prove that "ω̂ = ω̂". We put ω̂ in the inverse mellin transform to find

ω(y) = 1
2πi

∫
(c)
xs−1/2 exp

((
s− 1/2
S

)2)
y−s ds

for all real numbers c. We substitute u = s−1/2
S and find

ω(y) = S

y1/2 · 1
2πi

∫
(c)

exp(u2)
(
y

x

)−Su

du.

Abbreviating v = S log y
x shows further that

S

y1/2
1

2πi

∫
(c)

exp(u2) exp(−uv) du = S exp(−v2/4)
y1/2 · 1

2πi

∫
(c)

exp((u− v/2)2) du.

This integral does not depend on c, hence we may wlog assume c = v/2, which reveals that this
integral equals

1
2πi

∫
(0)

exp(u2) du = 1
2π

∫ ∞

−∞
exp(−t2) dt = 1

2
√
π
,

just what we wanted.

Problem 4

First, an aside on the weird-looking error term ψ(x) − x ≪ xe−c
√

log x. On the one side it is
better than every error term of the form x/(log x)A (for A ∈ R>0 large), on the other side it is
worse than every error term of the form x1−δ would be (for δ ∈ R>0 small).

Our version of the prime number theorem reads

ψ(x) =
∑

pn≤x

log p = x+O(xe−c
√

log x)

for some constant c > 0. We deduce a formula for π in two steps. First we show that ψ(x) does
not differ too much from the weighted prime-counting function

ψ0(x) :=
∑
p≤x

log p.

Then we use ψ0 for partial summation, utilizing that

π(x) =
∑
p≤x

log p
log p = ψ0(x)

log x +
∫ x

2

ψ0(t)
t(log t)2 dt. (2)

Evaluating this should be possible using the approximation for ψ0(x).
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Let’s carry this through, beginning with the estimate for |ψ(x) − ψ0(x)|. We find

ψ(x) − ψ0(x) =
∑

pk≤x, k≥2
log p ≤

 ∑
p≤

√
x

+
∑

p≤x1/3

+ · · · +

 log x

Note that there are at most log2 x summation signs which don’t run over an empty set, and
every index set contains (trivially) less than

√
x primes. We obtain

ψ(x) − ψ0(x) ≤ (log2 x)
√
x(log x) ≪ x1/2+ε.

Now ψ0 satisfies the same approximation as ψ, as

ψ0(x) = ψ(x) +O(x1/2+ε) = x+O(xe−c
√

log x).

Inserting this in (1) yields

π(x) = x

log x +
∫ x

2

1
(log t)2 dt+O(xe−c

√
log x),

where we used that
∫ x

2
1

t(log t)2 dt ≪ 1. As

∫ x

2

1
(log t)2 dt =

[
Li(t) − t

log t

]x

2
= Li(x) − x

log x +O(1),

the claim follows.
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