Solutions to Sheet 8.

Problem 1

a-4p) Look at sheet 5.
b-6p) The approximation in (4.9) reads

Z di(n) = 2P (logz) + O(x17?).

n<x

Reading the proof reveals that the main term is given by the residue

k s
R = Resszlc (i)x = Ress=1F%(s),

k
where for convenience Fj(s) = & (z)m Of course ¢¥(s) has a singularity of degree k at 1, and
we only need to calculate the (—1)st term of the Laurent expansion of F' at 1. We have the
Taylor expansions

i s—1)"=1—-(s—1)+(s—12+0((s —1)%)

n=0

v =3 8D (4= 0t aloga)(s - 1)+ Salloga)?(s — 12+ O((s — 1)),

Let a, denote the coefficients of the Laurent series of { at 1, i.e.

oo

((s) = Z an(s —1)".

n=—

Calculating P, and Ps now is pure calculation.

Calculating P,. We find

2
(s) = ( Z ans") =a* (s — 1) 2+ 2a_1ap(s — 1)1+ O(1).

We multiply this with the Taylor series above and find that the coefficient of (s — 1)~! is given
by
2a_1apx + a? | (zlogz — ) = 2(a*, logx + 2a_1a0 — a*,).

Remark. It is possible to show by elementary means that
oo
Z dy(n) = zlogz + (2y — 1)z + O(z'/?),
n<zx

which shows that ap = . (I just realized that a_; = 1 is already known haha, but we could
probably also derive this with a similar approach and k& = 1). This shows

PQ(X) =X+ 2ap — 1.



Calculating P;. We find similarly to above
G(s)=(s—1) +3ag(s — 1) 2+ 3(ad +a1)(s — 1)L+ 0(1).

and again use this to figure out the coeffitient of (s—1)~! in the Laurent expansion of F3 around
s = 1. We find that this coefficient is given by

3(ag + a1)x + 3apz(logxz — 1) + z((log x)* — log 2 + 1)
1
= 2(5(logz)” + (logz)(3y = 1) + 3(y* + a1 —7) + 1),

ie.
1
P3(X) = 5952 +(3y = Ve + 3(a1 + a§ — ag) + 1.

Problem 2

a) To calculate ¢’(0), we make use of the functional equation, in the form

2I(s)

<(1 - S) = C(S) (271')5

sin((7(1 —s)/2).

(This can be derived from the usual functional equation using the reflection formula I'(2)I'(1 —
z) = sm?im) For s close to 1 we find

(s = 1¢(s)0(s) =1+ O((s = 1)%),

and
sin(r(1 —8)/2) = =X (s — 1) + O((s — 1)°).
Hence -
C(1—s) = 7# +0((s = 1)%) = —5 — 5 log(2m) (s — 1) + O((s — 1)?).
This gives ¢'(0) = —°62T. We now insert this into (5.2). For L(s) = ((s), this reads as
LR L2 ()

p#0,1
Taking the logarithmic derivative of the recurrece relation I'(s 4+ 1) = sI'(s) reveals

M(s+1) 1 T'(s)

I'(s+1) s T(s)’

We can use this to simplify our equation, leaving us with

! lo 1T(s/2+1 1 1 1
_2((::)) T §W+2F((s//2+1)) _b+s—1 a Z (3— +>'
prog NP P
When inserting s = 0, this sum vanishes, and we find
) legx 1T,
G0~ 2 TaTq |
This proves the claim, as we know ((0) = —3, I'(1) = 1 and the values for ¢’ and I'” from above.



Remark. The formula I'V(1) = —v can be derived from the Weierstrafl product

1 [e) 5 A
= 2¢"* [ ] ) e#/i
I‘(z) ze (1 + ) e

=1~ 7

by taking logarithmic derivatives on both sides and inserting z = 1.

b) This statement is false, but of course, we are supposed to show |[Im(p)| > 6 for all the
non-trivial roots of the zeta function. By (5.3a), we have that

—b=—Reb= ZRe(%).
p

The idea is that if Im p; was small, then this sum would be so large that this equality cannot
hold (remember that b = —0.023 is quite small). Let p = o + it be a root with smallest possible
imaginary value. Note that with p, we also have roots 1 — o £ it and o — it, so we may assume
that o > % and that ¢ > 0. As all contributions in the sum of (5.3a) are positive, we find

S 1 n 1 _ 20 S 1
To4it o—it 02412 T 1442

This shows t > v/—b—1 —1 ~ 6.5036.

Problem 3

a-5p) The "only" thing left to made precise is the contour shift. The main ingrediants are (5.3b)
and (5.3c).

Just for convenience, let’s summarize the bounds we need for %:
o(1) Res > 2,
C/
Z(S): O(log|s]) Res < —3, |s+2m| > 1 for all m € N,
Z‘p,8|§1$+0(1+log]s]), —1<Res <3.

The first bound follows from %’(5) = >, A(n)n~?, the second part follows from the first bound,
the functional equation and Stirling’s formula. The third part is (5.3c).

By (5.3b), there are approximately log T roots of the zeta-function with imaginary part close
to T (i.e., |T'—Imp| < 1). Hence given some n € Z, the pigeonhole principle assures that it
is possible to find some 7' = T}, with |n — T| < 1 and min, |7 — Im p| < . Together with

log|n|*
(5.3¢), this gives that Cf(a +iT) < (log |T])? on that line.

The plan is now to choose some large n, and shifting the truncated integral

1 2+4in o~/
—%/Z_m Cé(s)@(s) ds (1)

to Res = —1/2. This leaves us with the exercise to bound the horizontal integrals along the
segments [2 £ in, —1/2 +in]. By the rapid decay of @ and the bounds for ¢’/(, changing the
boundaries of the integral in (1) from [2 —in, 2+ in] to [2 —iT},,2+1T;,] comes only with a small



cost of o(1). So we may also assume that uniformly ¢(o + iT;,) < (logn)? along the horizontal
segments. This justifies the first contour shift, and we obtain

24+in /(g
S Am(n) = = [ L)

=S C(9) w(s)ds+o(1)

—1/24iT (1 ( g
.S @(p)+2;i/_1/2_;n i((s))@(s)ds—i-o(l).

We may let n — oo, obtaining

- w(p) = €/<8)@s s
At = 32000 = | S ds

In the proof of (4.4c) we can abuse the fact that Supp(w) C [2,00) to show that &(s) < ﬁ
for all N. This shows the bound

/
/ ) sy ds < 274,
(—A+1/2)
justifying the shift Re s — —oo.

b-5p) The observation is that this function has large negative peaks at the primes , and when
n = p¥ is a prime power (to be fair, withouth knowing the explicit formula, this would be
hard to guess). Although the solution will (implicitely) assume the Riemann conjecture, this
illustrates the fact that ¢ knows everything about the primes.

Okay, let’s analyze what’s happening here. First, we have
cos(vjlog ) = Re(e"71°8®) = Re(x17),

so we are plotting the real part of the sum of 217 over the first few zeroes. If we want to interpret
this as a sum > ,@(p), we would like to choose w in way such that ©(1/2 + iy) ~ x" for the
zeroes we want to consider, and @ decaying rapidly after that range (ignoring the contribution
of the trivial zeroes).

Apparently (not clear to me how to come up with this but hey it works) a convenient seems to
be

: —1/2\?
B(1/2+17) = 27 exp(—(7/5)?) = 2" F exp (( = ) ) ,
as this vanishes quickly once v > S. We choose S to be a parameter roughly of the size of the
largest zero we want to consider, which in our case is 39 &~ 100. That’s why we choose S = 100.
We will later show that the weight

w(y) =ws(y) = 2(7”/5’)1/2exp <_ (g log <:?1J:>)2>

is the inverse Mellin-transform of . Now this is large if the part in the exponential vanishes,
i.e., if z & y. On the other side, if y is not close to = then log(y/x) becomes large (say of size
~ 10), then the factor exp(—52/4log(y/x)?) makes w decay quickly. So at least for = not too
large (for large x we need a further distance between y and z to make log(y/x) become large),
w essentially looks like a peak at y = x. We are now ready to explain what’s going on. With



the explicit formula (which we are technically not even allowed to use as w is not compactly
supported, but whatever), we find

S

ZA(n)w57x(n) A — Z w(p) =~ Zcos(’yj log z).

Im p| <S5 =1

If now z ~ p¥ is close to a prime power, the LHS is ~ A(n)yl%, large. If not, there is no term
on the LHS that contributes much, so we would expect the RHS to be small.

Prove that "0 = ©". We put @ in the inverse mellin transform to find

_ L e (5—1/2)2 s
w(y) = 5 /(C)x exp ( 5 y *ds

for all real numbers ¢. We substitute u = % and find

S 1 o (Y —Su
w(y) = mye o /(C) exp(u”) <$) du.

Abbreviating v = Slog ¥ shows further that

S 1 9 _ Sexp(—v?/4) 1 9
leQTH /(C) exp(u”) exp(—uv) du = T Co /(C) exp((u — v/2)7) du.

2mi

This integral does not depend on ¢, hence we may wlog assume ¢ = v/2, which reveals that this

integral equals

[ ew)du= o [ ew(-)di= 5
— exp(u®)du = — exp(— = —
27i J(0) P 21 oo P 2/’

just what we wanted.

Problem 4

First, an aside on the weird-looking error term v (z) — z < ze~°VI°2%  On the one side it is
better than every error term of the form x/(logx)? (for A € R.q large), on the other side it is
worse than every error term of the form z'~° would be (for § € Rsq small).

Our version of the prime number theorem reads

P(x) = Z logp=x+ O(me_c\/@)

pr<z

for some constant ¢ > 0. We deduce a formula for 7 in two steps. First we show that ¢ (z) does
not differ too much from the weighted prime-counting function

o(x) = Z log p.

p<w

Then we use 1y for partial summation, utilizing that

() = Z logp _ Yo(@) + /; to(t) dt. (2)

logp logx t(logt)?

p<z

Evaluating this should be possible using the approximation for g (z).



Let’s carry this through, beginning with the estimate for |¢(x) — ¥o(z)|. We find
Y(x) — to(x) = Z logpg(z + Z _|_..._|_) log =
pk<z, k>2 p<\z p<zl/3

Note that there are at most logy x summation signs which don’t run over an empty set, and
every index set contains (trivially) less than /x primes. We obtain

U(x) — o(z) < (logy 2)vz(logx) < z'/?+e.
Now 1)y satisfies the same approximation as v, as
Yo(z) = (z) + O(Il/ere) =x+ O(mefcx/@)'

Inserting this in (1) yields

T z 1
— —c/logx
m(x) oz 7 + /2 (log 1) dt + O(ze ),

where we used that [3° m dt < 1. As

z 1 . t 1% L. T
/2 T = [Ll(t) - bgtL — Li(z) +o(1),

the claim follows.
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