Solutions to Sheet 9.

Problem 1&2

Want to estimate

Sa(x) = 1.
n<z,Q(n)=2
Write it as
So(x)= 3 > 1= > (n(z/p)— 7))+ O(Vx).
p<vz p<lqlz/p p<\T
Use PNT, get
z/p
SQ(LE) = Z / ﬁ_{_O(ZEe—C\/logz)
» logt
p<Vz

for a constant ¢ > 0 (not the same as in the PNT). Concept-wise we are done here, as all is
left to do is to do partial summation with g(¢) = Li(z/t) — Li(t) as smooth weight, and a,, the
indicator function on primes. Estimating the rest is a bit tedious, but straight-forward:

We have g(y/z) =0 and —¢'(t) = @ + m. We obtain

VT (t) m(t)x

Sa(z) = pg}g(p) = /2 logt | Zlog(x/t) a

The integral over 7(t)/logt can be dealt with quite quickly. We have 7(t) < @, hence

/ﬁﬂ(t)dt<</ﬁtdt<<x
9 logt 2 (logt)? (log z)?"

We are left with

_VE ow(t)zdt x V= a((logt)t 4+ O((logt)™2)) x
0= | o O () = o O ()

where we applied the PNT again, this time with error term O(z/(log z)?). The integral over the
O-term is also easily handled. We have log(z/t) > log x, and hence find that the contribution
is bounded by

(logz)?

’ / v dt < —
logz Jo  t(logt)? logx
We are left with

Sy() = /ﬁldtJrO( Ty
28 =2, t(logt)(log ¥) logz”
We can use the geometric series to show that
1 1 1 log 1 ( log t )
= — 1 og — .
log% logz(1 — llngfE) log x ( t (1ng)) log (log x)2

Hence we obtain

T CE | T Ve ] T YCE| T
52(z) log x /2 tlogt +0 ((log x)? /2 t>+0(1°g1’) log = /z tlogt +0 (logaz)




This integral is exactly given by
Nz
/ Tdt = loglog vz — loglog 2,
2

which leaves us with

Sz(x):xloglog:c+0( x )7
log log

as desired.

Problem 3

This is a consequence of Merten’s theorem, which states that for z > 1,
1
Z — =loglogz 4+ C + O((logz) ™)
p<z

for some constant C.

Note that

pln) _ [Ta-»",

n
pln

so we really want to show that the RHS is > (loglogn)~!. The product over the prime divisors
of n is hard to get a hold on. It would be much easier if we could somehow relate this to
products of the form [],., (1 —p~ 1), as these products can be bounded with Merten’s formula:

n<1—;>=exp(zlog<1—;>)—exp( 1T

p<z p<zx p<x
=exp | —loglogx — C + O((logx)™ szk+0 ZZ
P k>2 p>T k>2 p

e <O( : )) = 14 Ol(log) )

log log x log logx

(This also was on sheet 0). In particular, if we choose x = logn, we obtain
1 -1
H 1—=)> (loglogn)~".
p<logn p
This is nice, because the prime divisors p | n with p > logn don’t contribute anything:

1 1 w(n) 1 2logn
11 (1—)2(1— ) 2(1— ) > 1.
D logn logn

pln, p<logn

(Here we used w(n) < logy(n) < 2logn and that one formula for e¢). Hence we can conclude

() I ()
LASAY 1—=)>——.
n o logn H P >>10glogn

p<logn

Notes after correcting. I just realized that the long calculation can be replaced by a reference
o (5.9). This also makes the reference to Merten’s theorem dispensable, but technically uses
the (much stronger) prime number theorem.



Problem 4

Okay, let ¢ > 0 and let ¢ and ¢ be two exceptional moduli with zeroes characters x, x’ and
real zeroes 3, 3’ satisfying the condition of the exercise. Let’s compare the assumptions with
the statement of (5.12).

(A) We have 1 — 102(1 < 3, and similar for ¢'.

(5.12) There is some small d > 0 (independent of ¢ and ¢’) such that we have min(g, ") <

d
1- log(qq")

If we assume ¢ < ¢/, we certainly obtain

d d _log(qq
1o b e G ledd) sy

- < d/cfl‘
log g log(qq’)’ c log ¢

1

Thus, any ¢ < d/3 does the job.
This shows that there are O(loglogn) exceptional moduli up to n.

Aside: There is nothing special about the 2 in the exponent, if we choose ¢ small enough we
can get arbtirarily large exponents. But gives stronger conditions on what it means to be
exceptional.
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