Solutions to Sheet 10.

Reminder: Li(n) = [’ @dt.

Problem 1

This exercise tests your understanding of the Siegel-Walfiz theorem. Let’s write down explicitely
what it says.

Theorem 1 (Explicit Siegel-Walfisz). Let A > 0. There is a constant K = K(A) and a constant

¢ such that whenever q < (log x)A, we have the approximation (with K and ¢ independent of
ql!!)
x oo
—— —¢Y(x;q,a)| < Kze™© logz
e(q)

It is a routine exercise in partial summation to obtain the corresponding statement for m(x),
which reads (with the same c)

Theorem 2 (Explicit Siegel-Walfisz for m). Let A > 0. There is a constant K = K(A)
and a constant ¢ such that whenever q < (log x)A, we have the approzimation (with K and c
independent of q!!!)

Li(z)

©(q)

—n(x;q,a)| < Kze™cVios?,

In particular, if ¢ is large enough and we choose x such that ¢ < log(a:)A (i.e., so large that we

can apply Siegel-Walfisz), we have Kze ¢VI8% < % +1, so that w(x;¢q,a) > 0. The condition
)A

q < (logz)” is equivalent to e <z As A may be chosen arbitrarily large, this implies that
we have 7(z;q,a) > 0 if 2> e?".

This bound might feel unsatisfying, because exp(¢®) is huge compared to q! We cannot do much
better because the possibility of Siegel-Zeroes forces us to impose hard restrictions on the size
of ¢ compared to z. However, if the generalized Riemann hypothesis were true, we wouldn’t
have to worry about them. Perron’s formula would the estimate

b(z, x) < (log q)x2 e

and hence
T

x; a:L n)A(n)n™% = —— og q)z'/*e
U(z;q.a) @(q);;x( )A(n) (g +OWlog )z 2T). (1)

(I am not completely sure with the error term, but you might be able to work this out yourself.
You will need the approximations

, o(1) Res > 2
f(s,x) = ¢ O(logq]|s|) Res < —1 and |[s+m|> 1vmeN
Z|t71mp|§1 ﬁ + O(log(Q(2 + ‘ﬂ))) _% < Res <2,

where the latter sums goes over the non-trivial zeroes of L(s,x).) Anyways, we observe that
the main term of (1) dominates the error if ¢>* < 2. This is the desired bound.



Problem 2

(a)

Let’s try partial summation in conjunction with Polya-Vinogradov.

Z x(n)yn=*=N7% Z x(n) —M—* Z x(n) —I—S/N t—s1 Z x(n)dt

M<n<N n<N n<M M M<n<t

Now Polya-Vinogradov gives that every sum can be bound by O(g'/?1logq). We obtain

|s|qM— e

N
Z x(n)n ™ < M~ Resgs logq + |s|/ ¢~ Res—1g3 log qdt <
M Res

M<n<N

Here we completed the integral and bounded q% logg < ¢. (This is not optimal, but it
doesn’t matter).

Note that in part a, we can choose N arbitrarily large (without changing the implicit
constant in <!). Hence it makes sense to choose some M > 2 and split the sum L(s, x) =
> nen X(n)n™% into the parts n < M and n > M and apply the result of part a for
the latter sum. How large do we have to choose M in order to make this work? As
Res > 1— (logq)~! and |Im s| < ¢ we find |s| < ¢Res. With part a, this gives

> X()n® < M losa L,
M<n

If we choose M = ¢2, this reduces to < 1, so let’s see if the sum with terms n < M is
small enough. We trivially bound

1, M ) B
Z x(n)n™° « Z ploga)~'n! <</1 (logg) ™' =1 gy _ [(logq>t(logq) 1]1 _
n<M n<M

M

As M = ¢® and (qQ)(lOg‘Z)_1 = ¢2(ogq)(loga) ™! — o2 « 1, we are done.
We will prove this with Cauchy’s integral formula. Remember what it says:

1 L(z,x) 4

L(s,x) = —
(5:%) 271 Jo (2 — 5)? =

where C'is some path convoluting s. We choose C to be the circle {z | |z — s| = (logq)~'}.
This might cause us to leave the domain Res > 1 — (log q)~!, however the bound of part
b stays valid even if Res > 1 — 2(logq)~*. We get
L(z, x)
L'(s,x) < / /22 dz < (logq)?.

|2—s|=(loga)~* (2 — )
Here we used L(z,%) < loggq and (s — 2)72 < (logq)?, so the part in the integral is
bounded by O((logq)?). As we integrate over a path with length O((logq)~!), we obtain
a bound with O((log ¢)?), and we win.

Problem 3

Before solving this, we should maybe try to figure out why we would expect this result. Given
some number n, we are supposed to evaluate the counting function

R(n) = #{p < n|n —pis square free}.



Naively, one might be think that

R(n) ~ ¢(2)"'m(n) = [](1 = p~*)m(n),

p

as the propability of a random number to be square-free is (in a suitable sense) given by ¢(2)71,
and we inspect numbers (which seem random) in a set of cardinality 7(n). This heuristic is not
too far off, but it is wrong! The main term of the asymptotic is clearly different.

To see what goes wrong, let ¢ be any prime number. First assume that ¢ t n. What is the
probability that ¢? divides n — p for some prime p # ¢? Neither n nor p are divisible by ¢, so the
residue classes of these numbers mod ¢? are invertible, and there are (¢?) such residue classes.
So the probability is given by ¢(¢?)~!. Now assume ¢ | n. One quickly checks that ¢? cannot
divide n — p (unless p = ¢, but this case does not contribute much). Now we can explain the
asymptotic: There are ~ Li(n) primes < n, and the probability for n — p not being divisible by
some prime ¢ is given by (1 — p(¢?)™1) if ¢ f n and by 1if ¢ | n. As n — p is square-free iff no
square of a prime divides it, we should expect

R(m) ~ [T(1 = ola®) )it =TT (1 -

qtn ain

L )>_1Li(n),

q(q —1
and this is what we have to prove.

Proof. Clearly, we have R(n) =3, p?(n — p). A standard trick to deal with p? is writing it
as pi(k) = X2, #(d). Applying this gives

R =Y Pn-p)=Y ¥ wd)= Y wa Y L

p<n p<n d2|n—p d<\/n p<n, p=n mod d2

This is now basically an issue of counting primes in an arithmetic progression! Hence it really
smells like Siegel-Walfisz, but this is not applicable right away. One issue is that we can only
apply Siegel-Walfisz if (d,n) = 1. But restricting to those d does not really affect our main
term, as whenever (d,n) > 1 there is at most one prime number in that arithmetic progression,
and the contribution of those is bounded by w(n) < n°. Furthermore, and more seriously,
Siegel-Walfisz is only applicable if d is small compared to n, more precisely, only if d < (logn)*.
But again, we can elementarily bound the terms with d > (logn)“. Given some d, the amount
of numbers < n congruent to n mod d? can be bounded by < 2. We obtain

n
R(n) = Z v(n;n, d2) + 0 ( Z d2) + O(vn),
d<(logn)4, (d,;n)=1 (logn)A<d<y/n
and the O-terms can be bound by « W. Also, we can now apply Siegel-Walfisz! We find
1 n
Rm)= Y L Lim+o0 (A) .
d<(logn)4, (d;n)=1 QO(d ) (IOg n)

The sum can be completed, as p(d?) > % > d?~¢, so that

1 1
< .
d>(§n)‘4 P(@) " (ogm)Hi=9

This allows us to conclude (for any A, not the choice we made before)

Rn)= % sO(ip)m(n) +04 ((IO;;)A) -1 (1 - @(;2» Li(n) + O4 <(")A> .

deN, (d,n)=1 pin



Problem 4

We follow the hint. Let n = 3 mod 4, write it as n = 4k 4+ 3. Now
4 1 4 4 4 4 1

n k+1 n n+1 nn+1) @k+3)dk+4) @k+3)(k+1)

This shows that there is a solution for every n = 3 mod 4. One also quickly verifies that if
% = % + %, then min = ﬁ + %. Also, there is a solution whenever n is even. Hence we really

only have to show that almost all numbers have a prime divisor = 3 mod 4.

Now we can use (5.15). The numbers having only prime factors congruent 1 mod 4 is a subset

of the numbers that can be written as a sum of two squares, and by (5.15), the number of sums
X

of two squares up to x is bound by O(\/@) = o(z).

Max von Consbruch, email: sémavonc@uni-bonn.de. Date: January 10, 2023



