

Solutions to Sheet 10.

Reminder: $\text{Li}(n) := \int_2^n \frac{1}{\log t} dt$.

Problem 1

This exercise tests your understanding of the Siegel-Walfisz theorem. Let's write down explicitly what it says.

Theorem 1 (Explicit Siegel-Walfisz). *Let $A > 0$. There is a constant $K = K(A)$ and a constant c such that whenever $q < (\log x)^A$, we have the approximation (with K and c independent of q !!!)*

$$\left| \frac{x}{\varphi(q)} - \psi(x; q, a) \right| < Kx e^{-c\sqrt{\log x}}.$$

It is a routine exercise in partial summation to obtain the corresponding statement for $\pi(x)$, which reads (with the same c)

Theorem 2 (Explicit Siegel-Walfisz for π). *Let $A > 0$. There is a constant $K = K(A)$ and a constant c such that whenever $q < (\log x)^A$, we have the approximation (with K and c independent of q !!!)*

$$\left| \frac{\text{Li}(x)}{\varphi(q)} - \pi(x; q, a) \right| < Kx e^{-c\sqrt{\log x}}.$$

In particular, if q is large enough and we choose x such that $q < \log(x)^A$ (i.e., so large that we can apply Siegel-Walfisz), we have $Kx e^{-c\sqrt{\log x}} < \frac{\text{Li}(x)}{\varphi(q)} + 1$, so that $\pi(x; q, a) > 0$. The condition $q < (\log x)^A$ is equivalent to $e^{q^{1/A}} < x$. As A may be chosen arbitrarily large, this implies that we have $\pi(x; q, a) > 0$ if $x \gg e^{q^\varepsilon}$.

This bound might feel unsatisfying, because $\exp(q^\varepsilon)$ is huge compared to q ! We cannot do much better because the possibility of Siegel-Zeroes forces us to impose hard restrictions on the size of q compared to x . However, if the generalized Riemann hypothesis were true, we wouldn't have to worry about them. Perron's formula would the estimate

$$\psi(x, \chi) \ll (\log q) x^{\frac{1}{2} + \varepsilon}$$

and hence

$$\psi(x; q, a) = \frac{1}{\varphi(q)} \sum_{\chi} \sum_{n} \chi(n) \Lambda(n) n^{-s} = \frac{x}{\varphi(q)} + O((\log q) x^{1/2 + \varepsilon}). \quad (1)$$

(I am not completely sure with the error term, but you might be able to work this out yourself. You will need the approximations

$$\frac{L'}{L}(s, \chi) = \begin{cases} O(1) & \text{Re } s \geq 2 \\ O(\log q |s|) & \text{Re } s \leq -\frac{1}{2} \text{ and } |s + m| > \frac{1}{4} \forall m \in \mathbb{N} \\ \sum_{|t - \text{Im } \rho| \leq 1} \frac{1}{s - \rho} + O(\log(q(2 + |t|))) & -\frac{1}{2} \leq \text{Re } s \leq 2, \end{cases}$$

where the latter sums goes over the non-trivial zeroes of $L(s, \chi)$.) Anyways, we observe that the main term of (1) dominates the error if $q^{2+\varepsilon} < x$. This is the desired bound.

Problem 2

(a) Let's try partial summation in conjunction with Polya-Vinogradov.

$$\sum_{M < n \leq N} \chi(n)n^{-s} = N^{-s} \sum_{n \leq N} \chi(n) - M^{-s} \sum_{n \leq M} \chi(n) + s \int_M^N t^{-s-1} \sum_{M < n \leq t} \chi(n) dt$$

Now Polya-Vinogradov gives that every sum can be bound by $O(q^{1/2} \log q)$. We obtain

$$\sum_{M < n \leq N} \chi(n)n^{-s} \ll M^{-\operatorname{Re} s} q^{\frac{1}{2}} \log q + |s| \int_M^N t^{-\operatorname{Re} s - 1} q^{\frac{1}{2}} \log q dt \ll \frac{|s| q M^{-\operatorname{Re} s}}{\operatorname{Re} s}.$$

Here we completed the integral and bounded $q^{\frac{1}{2}} \log q \ll q$. (This is not optimal, but it doesn't matter).

(b) Note that in part a, we can choose N arbitrarily large (without changing the implicit constant in \ll !). Hence it makes sense to choose some $M > 2$ and split the sum $L(s, \chi) = \sum_{n \in \mathbb{N}} \chi(n)n^{-s}$ into the parts $n \leq M$ and $n > M$ and apply the result of part a for the latter sum. How large do we have to choose M in order to make this work? As $\operatorname{Re} s > 1 - (\log q)^{-1}$ and $|\operatorname{Im} s| < q$ we find $|s| \ll q \operatorname{Re} s$. With part a, this gives

$$\sum_{M < n} \chi(n)n^{-s} \ll q^2 M^{(\log q)^{-1} - 1}.$$

If we choose $M = q^2$, this reduces to $\ll 1$, so let's see if the sum with terms $n < M$ is small enough. We trivially bound

$$\sum_{n < M} \chi(n)n^{-s} \ll \sum_{n < M} n^{(\log q)^{-1} n^{-1}} \ll \int_1^M t^{(\log q)^{-1} - 1} dt = [(\log q)t^{(\log q)^{-1}}]_1^M.$$

As $M = q^2$ and $(q^2)^{(\log q)^{-1}} = e^{2(\log q)(\log q)^{-1}} = e^2 \ll 1$, we are done.

(c) We will prove this with Cauchy's integral formula. Remember what it says:

$$L'(s, \chi) = \frac{1}{2\pi i} \int_C \frac{L(z, \chi)}{(z - s)^2} dz,$$

where C is some path convoluting s . We choose C to be the circle $\{z \mid |z - s| = (\log q)^{-1}\}$. This might cause us to leave the domain $\operatorname{Re} s > 1 - (\log q)^{-1}$, however the bound of part b stays valid even if $\operatorname{Re} s > 1 - 2(\log q)^{-1}$. We get

$$L'(s, \chi) \ll \int_{|z-s|=(\log q)^{-1}} \frac{L(z, \chi)}{(z - s)^2} dz \ll (\log q)^2.$$

Here we used $L(z, \chi) \ll \log q$ and $(s - z)^{-2} \ll (\log q)^2$, so the part in the integral is bounded by $O((\log q)^3)$. As we integrate over a path with length $O((\log q)^{-1})$, we obtain a bound with $O((\log q)^2)$, and we win.

Problem 3

Before solving this, we should maybe try to figure out why we would expect this result. Given some number n , we are supposed to evaluate the counting function

$$R(n) = \#\{p \leq n \mid n - p \text{ is square free}\}.$$

Naively, one might be think that

$$R(n) \approx \zeta(2)^{-1} \pi(n) = \prod_p (1 - p^{-2}) \pi(n),$$

as the probability of a random number to be square-free is (in a suitable sense) given by $\zeta(2)^{-1}$, and we inspect numbers (which seem random) in a set of cardinality $\pi(n)$. This heuristic is not too far off, but it is wrong! The main term of the asymptotic is clearly different.

To see what goes wrong, let q be any prime number. First assume that $q \nmid n$. What is the probability that q^2 divides $n - p$ for some prime $p \neq q$? Neither n nor p are divisible by q , so the residue classes of these numbers mod q^2 are invertible, and there are $\varphi(q^2)$ such residue classes. So the probability is given by $\varphi(q^2)^{-1}$. Now assume $q \mid n$. One quickly checks that q^2 cannot divide $n - p$ (unless $p = q$, but this case does not contribute much). Now we can explain the asymptotic: There are $\approx \text{Li}(n)$ primes $\leq n$, and the probability for $n - p$ not being divisible by some prime q is given by $(1 - \varphi(q^2)^{-1})$ if $q \nmid n$ and by 1 if $q \mid n$. As $n - p$ is square-free iff no square of a prime divides it, we should expect

$$R(n) \approx \prod_{q \nmid n} (1 - \varphi(q^2)^{-1}) \text{Li}(n) = \prod_{q \nmid n} \left(1 - \frac{1}{q(q-1)}\right)^{-1} \text{Li}(n),$$

and this is what we have to prove.

Proof. Clearly, we have $R(n) = \sum_{p \leq n} \mu^2(n - p)$. A standard trick to deal with μ^2 is writing it as $\mu(k) = \sum_{d^2 \mid k} \mu(d)$. Applying this gives

$$R(n) = \sum_{p \leq n} \mu^2(n - p) = \sum_{p \leq n} \sum_{d^2 \mid n-p} \mu(d) = \sum_{d \leq \sqrt{n}} \mu(d) \sum_{p \leq n, p \equiv n \pmod{d^2}} 1.$$

This is now basically an issue of counting primes in an arithmetic progression! Hence it really smells like Siegel-Walfisz, but this is not applicable right away. One issue is that we can only apply Siegel-Walfisz if $(d, n) = 1$. But restricting to those d does not really affect our main term, as whenever $(d, n) > 1$ there is at most one prime number in that arithmetic progression, and the contribution of those is bounded by $\omega(n) \ll n^\varepsilon$. Furthermore, and more seriously, Siegel-Walfisz is only applicable if d is small compared to n , more precisely, only if $d < (\log n)^A$. But again, we can elementarily bound the terms with $d > (\log n)^A$. Given some d , the amount of numbers $< n$ congruent to $n \pmod{d^2}$ can be bounded by $\ll \frac{n}{d^2}$. We obtain

$$R(n) = \sum_{d \leq (\log n)^A, (d, n) = 1} \psi(n; n, d^2) + O\left(\sum_{(\log n)^A < d < \sqrt{n}} \frac{n}{d^2}\right) + O(\sqrt{n}),$$

and the O -terms can be bound by $\ll \frac{n}{(\log n)^A}$. Also, we can now apply Siegel-Walfisz! We find

$$R(n) = \sum_{d \leq (\log n)^A, (d, n) = 1} \frac{1}{\varphi(d^2)} \text{Li}(n) + O\left(\frac{n}{(\log n)^A}\right).$$

The sum can be completed, as $\varphi(d^2) \gg \frac{d^2}{\log \log d} \gg d^{2-\varepsilon}$, so that

$$\sum_{d > (\log n)^A} \frac{1}{\varphi(d^2)} \ll \frac{1}{(\log n)^{A(1-\varepsilon)}}.$$

This allows us to conclude (for any A , not the choice we made before)

$$R(n) = \sum_{d \in \mathbb{N}, (d, n) = 1} \frac{1}{\varphi(d^2)} \text{Li}(n) + O_A\left(\frac{n}{(\log n)^A}\right) = \prod_{p \nmid n} \left(1 - \frac{1}{\varphi(p^2)}\right) \text{Li}(n) + O_A\left(\frac{n}{(\log n)^A}\right).$$

Problem 4

We follow the hint. Let $n \equiv 3 \pmod{4}$, write it as $n = 4k + 3$. Now

$$\frac{4}{n} - \frac{1}{k+1} = \frac{4}{n} - \frac{4}{n+1} = \frac{4}{n(n+1)} = \frac{4}{(4k+3)(4k+4)} = \frac{1}{(4k+3)(k+1)}.$$

This shows that there is a solution for every $n \equiv 3 \pmod{4}$. One also quickly verifies that if $\frac{4}{n} = \frac{1}{a} + \frac{1}{b}$, then $\frac{4}{mn} = \frac{1}{ma} + \frac{1}{mb}$. Also, there is a solution whenever n is even. Hence we really only have to show that almost all numbers have a prime divisor $\equiv 3 \pmod{4}$.

Now we can use (5.15). The numbers having only prime factors congruent 1 mod 4 is a subset of the numbers that can be written as a sum of two squares, and by (5.15), the number of sums of two squares up to x is bound by $O(\frac{x}{\sqrt{\log x}}) = o(x)$.