
Solutions to Sheet 10.

Reminder: Li(n) :=
∫ n

2
1

log t dt.

Problem 1

This exercise tests your understanding of the Siegel-Walfiz theorem. Let’s write down explicitely
what it says.

Theorem 1 (Explicit Siegel-Walfisz). Let A > 0. There is a constant K = K(A) and a constant
c such that whenever q < (log x)A, we have the approximation (with K and c independent of
q!!!) ∣∣∣∣ x

φ(q) − ψ(x; q, a)
∣∣∣∣ < Kxe−c

√
log x.

It is a routine exercise in partial summation to obtain the corresponding statement for π(x),
which reads (with the same c)

Theorem 2 (Explicit Siegel-Walfisz for π). Let A > 0. There is a constant K = K(A)
and a constant c such that whenever q < (log x)A, we have the approximation (with K and c
independent of q!!!) ∣∣∣∣Li(x)

φ(q) − π(x; q, a)
∣∣∣∣ < Kxe−c

√
log x.

In particular, if q is large enough and we choose x such that q < log(x)A (i.e., so large that we
can apply Siegel-Walfisz), we have Kxe−c

√
log x < Li(x)

φ(q) +1, so that π(x; q, a) > 0. The condition
q < (log x)A is equivalent to eq1/A

< x. As A may be chosen arbitrarily large, this implies that
we have π(x; q, a) > 0 if x ≫ eqε .

This bound might feel unsatisfying, because exp(qε) is huge compared to q! We cannot do much
better because the possibility of Siegel-Zeroes forces us to impose hard restrictions on the size
of q compared to x. However, if the generalized Riemann hypothesis were true, we wouldn’t
have to worry about them. Perron’s formula would the estimate

ψ(x, χ) ≪ (log q)x
1
2 +ε

and hence
ψ(x; q, a) = 1

φ(q)
∑

χ

∑
n

χ(n)Λ(n)n−s = x

φ(q) +O((log q)x1/2+ε). (1)

(I am not completely sure with the error term, but you might be able to work this out yourself.
You will need the approximations

L′

L
(s, χ) =


O(1) Re s ≥ 2
O(log q |s|) Re s ≤ −1

2 and |s+m| > 1
4∀m ∈ N∑

|t−Im ρ|≤1
1

s−ρ +O(log(q(2 + |t|))) −1
2 ≤ Re s ≤ 2,

where the latter sums goes over the non-trivial zeroes of L(s, χ).) Anyways, we observe that
the main term of (1) dominates the error if q2+ε < x. This is the desired bound.
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Problem 2

(a) Let’s try partial summation in conjunction with Polya-Vinogradov.

∑
M<n≤N

χ(n)n−s = N−s
∑

n≤N

χ(n) −M−s
∑

n≤M

χ(n) + s

∫ N

M
t−s−1 ∑

M<n≤t

χ(n) dt

Now Polya-Vinogradov gives that every sum can be bound by O(q1/2 log q). We obtain

∑
M<n≤N

χ(n)n−s ≪ M− Re sq
1
2 log q + |s|

∫ N

M
t− Re s−1q

1
2 log q dt ≪ |s| qM− Re s

Re s .

Here we completed the integral and bounded q
1
2 log q ≪ q. (This is not optimal, but it

doesn’t matter).

(b) Note that in part a, we can choose N arbitrarily large (without changing the implicit
constant in ≪!). Hence it makes sense to choose some M > 2 and split the sum L(s, χ) =∑

n∈N χ(n)n−s into the parts n ≤ M and n > M and apply the result of part a for
the latter sum. How large do we have to choose M in order to make this work? As
Re s > 1 − (log q)−1 and |Im s| < q we find |s| ≪ qRe s. With part a, this gives∑

M<n

χ(n)n−s ≪ q2M (log q)−1−1.

If we choose M = q2, this reduces to ≪ 1, so let’s see if the sum with terms n < M is
small enough. We trivially bound∑

n<M

χ(n)n−s ≪
∑

n<M

n(log q)−1n−1 ≪
∫ M

1
t(log q)−1−1 dt =

[
(log q)t(log q)−1]M

1
.

As M = q2 and (q2)(log q)−1 = e2(log q)(log q)−1 = e2 ≪ 1, we are done.

(c) We will prove this with Cauchy’s integral formula. Remember what it says:

L′(s, χ) = 1
2πi

∫
C

L(z, χ)
(z − s)2 dz,

where C is some path convoluting s. We choose C to be the circle {z | |z − s| = (log q)−1}.
This might cause us to leave the domain Re s > 1 − (log q)−1, however the bound of part
b stays valid even if Re s > 1 − 2(log q)−1. We get

L′(s, χ) ≪
∫

|z−s|=(log q)−1

L(z, χ)
(z − s)2 dz ≪ (log q)2.

Here we used L(z, χ) ≪ log q and (s − z)−2 ≪ (log q)2, so the part in the integral is
bounded by O((log q)3). As we integrate over a path with length O((log q)−1), we obtain
a bound with O((log q)2), and we win.

Problem 3

Before solving this, we should maybe try to figure out why we would expect this result. Given
some number n, we are supposed to evaluate the counting function

R(n) = #{p ≤ n | n− p is square free}.
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Naively, one might be think that

R(n) ≈ ζ(2)−1π(n) =
∏
p

(1 − p−2)π(n),

as the propability of a random number to be square-free is (in a suitable sense) given by ζ(2)−1,
and we inspect numbers (which seem random) in a set of cardinality π(n). This heuristic is not
too far off, but it is wrong! The main term of the asymptotic is clearly different.
To see what goes wrong, let q be any prime number. First assume that q ∤ n. What is the
probability that q2 divides n−p for some prime p ̸= q? Neither n nor p are divisible by q, so the
residue classes of these numbers mod q2 are invertible, and there are φ(q2) such residue classes.
So the probability is given by φ(q2)−1. Now assume q | n. One quickly checks that q2 cannot
divide n − p (unless p = q, but this case does not contribute much). Now we can explain the
asymptotic: There are ≈ Li(n) primes ≤ n, and the probability for n− p not being divisible by
some prime q is given by (1 − φ(q2)−1) if q ∤ n and by 1 if q | n. As n − p is square-free iff no
square of a prime divides it, we should expect

R(n) ≈
∏
q∤n

(1 − φ(q2)−1)Li(n) =
∏
q∤n

(
1 − 1

q(q − 1)

)−1
Li(n),

and this is what we have to prove.

Proof. Clearly, we have R(n) =
∑

p≤n µ
2(n− p). A standard trick to deal with µ2 is writing it

as µ(k) =
∑

d2|k µ(d). Applying this gives

R(n) =
∑
p≤n

µ2(n− p) =
∑
p≤n

∑
d2|n−p

µ(d) =
∑

d≤
√

n

µ(d)
∑

p≤n, p≡n mod d2

1.

This is now basically an issue of counting primes in an arithmetic progression! Hence it really
smells like Siegel-Walfisz, but this is not applicable right away. One issue is that we can only
apply Siegel-Walfisz if (d, n) = 1. But restricting to those d does not really affect our main
term, as whenever (d, n) > 1 there is at most one prime number in that arithmetic progression,
and the contribution of those is bounded by ω(n) ≪ nε. Furthermore, and more seriously,
Siegel-Walfisz is only applicable if d is small compared to n, more precisely, only if d < (logn)A.
But again, we can elementarily bound the terms with d > (logn)A. Given some d, the amount
of numbers < n congruent to n mod d2 can be bounded by ≪ n

d2 . We obtain

R(n) =
∑

d≤(log n)A, (d,n)=1
ψ(n;n, d2) +O

 ∑
(log n)A<d<

√
n

n

d2

 +O(
√
n),

and the O-terms can be bound by ≪ n
(log n)A . Also, we can now apply Siegel-Walfisz! We find

R(n) =
∑

d≤(log n)A, (d,n)=1

1
φ(d2)Li(n) +O

(
n

(logn)A

)
.

The sum can be completed, as φ(d2) ≫ d2

log log d ≫ d2−ε, so that

∑
d>(log n)A

1
φ(d2) ≪ 1

(logn)A(1−ε) .

This allows us to conclude (for any A, not the choice we made before)

R(n) =
∑

d∈N, (d,n)=1

1
φ(d2)Li(n) +OA

(
n

(logn)A

)
=

∏
p∤n

(
1 − 1

φ(p2)

)
Li(n) +OA

(
n

(logn)A

)
.

3



Problem 4

We follow the hint. Let n ≡ 3 mod 4, write it as n = 4k + 3. Now

4
n

− 1
k + 1 = 4

n
− 4
n+ 1 = 4

n(n+ 1) = 4
(4k + 3)(4k + 4) = 1

(4k + 3)(k + 1) .

This shows that there is a solution for every n ≡ 3 mod 4. One also quickly verifies that if
4
n = 1

a + 1
b , then 4

mn = 1
ma + 1

mb . Also, there is a solution whenever n is even. Hence we really
only have to show that almost all numbers have a prime divisor ≡ 3 mod 4.

Now we can use (5.15). The numbers having only prime factors congruent 1 mod 4 is a subset
of the numbers that can be written as a sum of two squares, and by (5.15), the number of sums
of two squares up to x is bound by O( x√

log x
) = o(x).
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