
Solutions to Sheet 11.

Problem 1

Let’s first think about why this should be true. For 2 ̸= p we have g(p) = 2
p−2 ≥ 2

p = τ(p)
p . Hence

for square-free numbers n we have g(n) ≥ τ(n)
n . It is easy to see that

∑
n≤Q

τ(n)
n ≫ (log Q)2

(approximate the LHS with
(∑

n≤Q
τ(n)

n

)2
). Hence we expect a similar lower bound (with a

different constant) here. However, to make this precise we would have to show that the divisor
function does not interact with the square-freeness condition too badly.

Proof using Perron’s Formula. Let G(s) =
∑∞

n=1
g(n)
ns be the Dirichlet series attached to g.

As g behaves similar to τ(n)
n , we would hope to be able to relate g to ζ(s + 1)2, which is the

Dirichlet series attached to the coefficients τ(n)
n . We write G(s) = ζ(s + 1)2H(s), where we find

in Re s > 0

H(s) =
(

1 + 1
2s

)(
1 − 1

2s+1

)2 ∏
p>2

(
1 + 2

(p − 2)ps

)(
1 − 1

ps+1

)2
.

Factoring this out, we find that the euler factor at p is of size 1 + O(p−(s+2)), hence the
euler product is absolutely (and locally uniformly) convergent whenever Re s > −1, so H is
a holomorphic function in that region and thereby does not interfere with the analysis when
doing perron’s formula. Also note that now G can be continued to Re s > −1.

Now, we do what we always do. Let T = xα (for some α ∈ (0, 1)) and c = 1
log x . We find by

Perron’s Formula

∑
n≤x

g(n) = 1
2πi

∫ c+iT

c−iT
G(s)xs ds

s
+ O

xc

T

∑
n∈N

g(n)
nc

+ max
n∼x

g(n)
(

x log x

T

) .

We first inspect the O-term. As the series defining G(s) = ζ(s + 1)2H(s) converges absolutely
in Re s > 0, we find that g(n) ≪ n−1+ε. As the pole of G at 0 has order 2, we have

∑
n∈N

g(n)
nc ≪

(log x)2. In particular, we find that the O-term is bounded by O
(

xε

T

)
.

We now want to shift the contour to the left, to Re s = −1
8 , say. We pick up a residue at s = 0.

To compute the residue we develope everything into taylor series and find the residue to be of
size 1

2H(0)(log x)2 + O(log x). We obtain

∑
n≤x

g(n) = 1
2H(0)(log x)2 + Ver(x, T ) + Hor(x, T ) + O(log x) + O

(
xε

T

)
,

where Ver(x, T ) denotes the integral along the vertical paths

Ver(x, T ) = 1
2πi

(∫ −1/8−iT

c−iT
+
∫ c+iT

−1/8+iT

)
G(s)xs ds

s

and Hor(x, T ) denotes the integral along the horizontal path

Hor(x, T ) = 1
2πi

∫ −1/8+iT

−1/8−iT
G(s)xs ds

s
.
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As H(s) is absolutely bounded in Re s ≥ −1/2, so we can replace G(s) by ζ(s + 1)2 in all
upcoming considerations. On the vertical lines, we have xs ≪ x−1/8 and ζ(s + 1)2 ≪ T 1/4 (by
the convexity bound), so that we find

Ver(x, T ) ≪ TT 1/4x−1/8 = T 5/4x−1/8.

(We could have also made use of the moment bounds, and improved this bound a lot by cutting
the integral in dyadic pieces, but no need for that). For the horizontal integrals we use the
convexity bound to find that

1
s

≪ 1
T

and ζ(s + 1)2 ≪ T 1/2 and xs ≪ 1,

revealing Hor(x, T ) = O(1). If we choose T = x
1

10 , we also find Ver(x, T ) ≪ 1. Finally, note
that H(0) > 0 (essentially by absolute convergence and the fact that no factor equals 0), so
that ∑

n≤x

g(n) = 1
2H(0)(log x)2 + O(log x) ≫ (log x)2.

Elementary proof. Might be added later. See pages 179-181 in Brüdern’s book.

Problem 2

a) If we consider C as a linear operator CN → CR and equip these spaces with the L2-norm,
the statement of the exercise is equivalent to the statement that the operator norm C
and it’s dual C∗ coincide. This is a classical statement of functional analysis, and true in
general for Hilbert spaces.
But just for the sake of completeness, here is a proof. It suffices to show that (A) implies
(B), by symmetry. Assuming (A), we have

LHS =
∑

n

∣∣∣∣∣∑
r

cnryr

∣∣∣∣∣
2

=
∑
n,r,s

cnrcnsyrys =
∑

r

yr

∑
n

cnr

∑
s

cnsys.

Now we apply Cauchy-Schwartz to the sum over r, finding that

LHS2 ≤
∑

r

|yr|2
∑

r

∣∣∣∣∣∑
n

cnr

∑
s

cnsys

∣∣∣∣∣
2

≤
∑

r

|yr|2 D ·
∑

n

∣∣∣∣∣∑
s

cnsys

∣∣∣∣∣
2

= D ·
∑

r

|yr|2 · LHS.

b) We have to show that ∑
r

|S(αr)|2 ≪ (N + δ−1)
∑

n

|an|2

where S(α) =
∑

M<n<M+N ane(αn) and the values αr with pairwise distance at least δ.
As in the proof from the lecture, we may shift by K without changing the absolute value
of S(α), and may therefore assume M ≪ N (M might be negative). Of course we now
want to apply part a), which leaves us with the task of showing that

∑
|n|≤N

∣∣∣∣∣∑
r

bre(nαr)
∣∣∣∣∣
2

≪ (N + δ−1)
∑

r

|br|2 .

Because opening the absolute values and estimating the inner sums turns out to be hard,
we consider a smoothed version:∑

n

f(n/N)
∣∣∣∣∣∑

r

bre(nαr)
∣∣∣∣∣
2

≪ (N + δ−1)
∑

r

|br|2 ,

where f is a non-negative function with f |[0,1] = 1 and f(x) = 0 for |x| > 2. This clearly
implies the bound above.
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Problem 3

We open the square and interchange sums, obtaining

∑
n

f(n/N)
∣∣∣∣∣∑

r

bre(nαr)
∣∣∣∣∣
2

=
∑
r,s

brbs

∑
n

f(n/N)e(n(αr − αs)).

We use the elementary inequality |ab| ≤ a2 + b2 to obtain

· · · ≪
∑

r

∑
s

(|br|2 + |bs|2)
∣∣∣∣∣∑

n

f(n/N)e(n(αr − αs))
∣∣∣∣∣

= 1
2
∑

r

|br|2
∑

s

∣∣∣∣∣∑
n

f(n/N)e(n(αr − αs))
∣∣∣∣∣ ,

where in the latter inequality we used many symmetrys in this sum. We now try evaluating
this. First, we consider the diagonal terms with r = s. Here we have αr = αs, and we easily
find that this part of the sum is bounded by ≪ N

∑
r |br|2. For the remaining part, it suffices

to show that ∑
s ̸=r

∣∣∣∣∣∑
n

f(n/N)e(n(αr − αs))
∣∣∣∣∣ ≪ 1

δ
.

The idea is that αr − αs isn’t too small, so we hope that there is cancellation in the sum. This
is where Poisson’s summation formula enters the stage. As f is Schwartz class function, its
fourier transform is too and we find f̂(y) ≪ 1

1+y2 . Hence we obtain

∑
n

f(n/N)e(n(αr − αs)) =
∑

n

f̂(N(αr − αs + n)) ≪ N
∑

n

1
1 + N2(αr − αs + n)2 .

This is easily seen to be of size N
1+∥αr−αs∥2N2 . We are left to show that for fixed r,

∑
s ̸=r

1
1 + ∥αr − αs∥2N2 ≪ 1

Nδ
.

It would not be good enough to just use that ∥αr − αs∥ ≫ 1
δ . The only thing we can do to

avoid this bound is to use that there are at most 2 values for s for which this is smaller than δ,
at most four for which it is smaller than 2δ, etc. Hence we can bound the LHS as

≪
∞∑

n=1

1
1 + n2δ2N2 ,

which leaves us with the task of showing that
∞∑

n=1

1
1 + n2x2 ≪ 1

x

whenever x > 0. This is one line:

LHS ≪
∞∑

n=1
min(1,

1
n2x2 ) ≪

∑
n≤1/x

1 +
∑

n≥1/x

1
n2x2 ≪ 1

x
+ 1

x2

∑
n>1/x

1
n2 ≪ 1

x
.
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Problem 4

The plan is to reduce this to (6.4). We can shift indices to assume that l = 0. Then we
are summing over multiples of k in an interval of length N . This is the same as summing
over integers in an interval of length N/k. The only thing that might be in our way is the
exponential term, where we have the term e(akd

q ), but we would like to have e(ad
q ). But as we

have (k, q) = 1, summing over a mod q is the same as summing over ka mod q. We arrive at
something which really looks like (6.4), but with an additional coprimality condition. As all
terms in the sum of (6.4) are positive, the inequality still stays valid, and we are done.
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