Solutions to Sheet 12.

Problem 1

Again, we sketch a proof using Perron. We need to find out what the dirichlet function attached
to g looks like. We have

G(s) = Z gn)n™° = H <1 + pil)
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Remember that the Dirichlet series attached to % is given by
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On each euler factor, the first two terms of G(s) and ¢?(s + 1) coincide! So we might hope that
there is a way to compare the two Dirichlet series. Indeed, writing

G(s) = ((s +1)*H(s),

we find that H(s) is given by an euler product with factor at p given by
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(1 * pSH) (1 B p5+1> =1- p2(+D) + P3G =1+0(p ).

Now H(s) is absolutely convergent and uniformly bounded in Re s > —% + J, and we can copy
the proof from exercise 1 on sheet 11.

Problem 2

Partial summation! Write

Now (6.5) reads

By partial summation, we then find
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and the claim follows.



Problem 3&4

a) There are (at least) two ways to set up the sifting problem. Either we sieve for those integers
n < 21/2 such that n% + 1 is not divisible by prime numbers in some range, or we sieve for those
integers n < z such that n+1 is a prime and n is a quadratic residue mod p for prime numbers
in some different range. Let us think about the first idea, as this probably is what the exercise
intents us to do. The other approach would probably be a good exercise though! We set

o N = {z'/* < n < /z} (this is the set of numbers we want to put into the sieve) (There
is no particular reason to exclude numbers < z'/4, but there is also no reason to sieve for
more, as we will soon see).

o P ={2%#p<2'/*} (this is the set of primes we want to sieve with) (this could have been
chosen larger, but we will see why this is optimal (in some sense) soon).

¢ Q, = {Solutions to a* + 1 = 0 mod p} (for each prime p, this is the set of residue classes

mod p we want to throw out).

With this definition, we find that
N*={ne @@V 2 2| v2#£p <2 :pt(®+1)} D {ne (@ 2Y?]: n? + 1 prime}.

Hence, upper bounds for A™* deliver upper bounds for the number of primes of the form p = n?+1

in the range /z < p < x. As there are < lgfx primes up to /x, we further have

#{primes of the form p = n? + 1} < #N* + 0O <ﬁ> ,

log

which shows that we need to show #N* < l(;fx to finish the proof.

b) Note that p(p) = #£,. We have p(2) = 1. Mod p # 2, there are 2 solutions to £? = —1
mod p if (%) =1, i.e., if p =1 mod 4, and 0 otherwise. If m = rs with (r,s) = 1 and we have
p(r) solutions &2 = --. = gim = —1 mod 7 and p(s) solutions (¥ = --- = {3(8) = —1 mod s,
then by the chinese remainder theorem (and the fact that a = —1 mod m iff a = —1 mod r and

a = —1 mod s) we find that there are p(r)p(s) solutions mod rs. This shows p(rs) = p(r)p(s),
as desired.

c¢) Using (6.9), we can bound the number of elements in N**. We put

o) =TT =20,
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where w(p) = p(p) if p € P and 0 otherwise. In particular, g vanishes on even numbers. Now
we have for any @ > 1
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#N* < (N + Q) (Z g(Q)) 7
9<Q

where N = #N < /z. The task is to find a lower bound for

> 9(q),

q<Q



where (in order not to disturb the main term) we will choose Q < z!/* (this is also why it
suffices to only consider p < z'/4: these are the only prime divisors that occur as divisors of
numbers < Q). As p (and hence w too) is multiplicative, we find that whenever ¢ only has
prime divisors = 1 mod 4 that are in P,

As g(q) is supported on numbers that only have prime divisors p € P with = 1 mod 4, we find
that for such numbers we have g(q) > (q), where [(q) is implicitely defined via

P(s) = H (1+2p5h = Z l(n)n™*°

p=1(mod 4) neN

If we assume to know that >° - I(g) > log @, we find for @ < z'/* that

> glg) > > U(q) > logQ

9<Q 9<Q

#N* < (Vo (Zg) < YT
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and hence

which is what we wanted to show. (I don’t think we need this, however).

d) It remains to show that indeed 37 . 1(q) > log@. Our tool of choice will be Perron’s
formula again, or some variant thereof with smooth weights (elementary proofs are certainly
possible, but probably less constructive). Let’s choose ¢, T and write down what (4.7) says:
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One of the main tasks is now to express P(s) in a way that makes it possible to calculate its
analytic behaviour. The hint tells us that perhaps

P(s) ~ L(x—1,5 + 1)¢(s + 1),

which is nice because we know how to deal with ((s + 1) and L(x_4,5 + 1). Indeed, the Euler
factor at p =1 (mod 4) of L(s+ 1, x—4){(s+ 1) is given by

(1 + pf(erl) +p72(s+1) 4. )2 =14+ 2]37871 + O(pf2(s+1))
and at p = 3 mod 4 we find
(1 +p—(5+1) +p—2(s+1) +... )(1 _ p—(s+1) +p—2(s+1)) =14+ O(p_2(5+1)).

We can use the power series expansion

(o ¢]
(1+x)” Z

to deduce that the euler factors of H(s + 1) = P(s)(¢(s + 1)L(x_4,5 + 1)7% all lie in 1 +
O(p~2(+1)), which gives that H(s) is holomorphic and absolutely convergent (hence uniformly
bounded) in Res > 2/3.
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e) First, we will work through how one can find the bound using (1). Then we will discuss how
one could have used a smooth weight to simplify the analysis.

Okay, so let’s start with (1). As usual, we choose ¢ = 1/log @ and T' = Q% for some « € (0, 1).
We first inspect the O-term. As P(s) is absolutely convergent in Res > 0, we find that I(q) <
¢ 1. As L(x—4,1) # 0, P(s) has at most a simple pole at 0, hence we find 3", g(n)n=¢ < Q¢,
and the whole O-term is bounded by O(Q®/T). By the product expansion and the analytic
continuations of ¢ and L, we can continue P to a meromorphic function in Res > —1/3, and
we know that the only pole is at s = 0 with residue H(1)L(x—4,1) # 0. We find that
QS
Ress—o (P(8)5> = H(1)L(x-4,1)(logQ) +C

for some constant C' independent of (). Now we have to shift the contour, and every contour a
tad to the left of Re s = 0 suffices. Hence we might choose Re s = —1/8. The remaining integral
along the path v; U2 U3 where

"= [C—iT,—l/S—iT], Y2 = [_1/8_iT7_1/87iT]7 3= [_1/8+1T70+1T]
can be easily bounded using the convexity bound, which states that in this region
1_7‘7+5 1_7"_’_8
C(s) < (L+[s))77° and  L(s, x—a) < (1 +]s)) 77"

In total, after choosing T' (more precisely, «) appropiately small, no integal contributes more
than O(1). This shows the asymptotic

> Ua) = H(1)L(1, x-4)(log Q) + O(1),

q<Q

and we in particular find 37 - l(q) > log Q.

Using a smooth weight. We can make our life a lot easier if we choose some smooth weight
w with support in [0, 1] and w|[0’1 s21 = 1. With this choice, the derivative of w is compactly
supported. Note that by integration by parts and in Res > 0 we have

~ > s—1 1 * / s 1 /
B(s) = / o)t de = _7/ ()2 da = — = M(')(s). 2)
0 s Jo s
Here, M(w') is holomorphic on C and rapidly decaying on vertical lines by (4.4). Therefore,
(2) gives a meromorphic continuation of @ to C with a simple pole at 0, and we find that @ is
also rapidly decaying on vertical lines.

We find
_ b
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Y Ug) = Ugw(e/Q)
q<Q qeN
This integral is converging absolutely. Now shifting the integral to the left is easy as @ is eating
through everything (note that ¢ and L dont grow too fast by the convexity bound) and the
horizontal integrals vanish in lim7_,.,. We find

P(s)Q%w(s) ds.

1
27i

/ P(s)Q*G(s) ds = — / P(5)Q°3(s) ds + Ress—o (P(s)Q°0(s)) -
© (-1/8)

T 2mi

As before, the residue is of size > log ), and the remaining integral is absolutely convergent,
thereby of size O(Q~1/%).
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