
Prof. Dr. Valentin Blomer winter term 2022/23

Analytic Number Theory

Problem Set 1

Problem 1. Show that there are arbitrarily long intervals containing no primes in two
ways:

a) Construct explicitly a number an such that an, an ` 1, . . . , an ` n are composite
numbers.

b) Use Problem 1g) of Set 0 to show that there exist a constant c ą 0 and infinitely
many n such that rn, n` c log ns contains no prime.

Problem 2. a) Show that there are precisely two arithmetic functions α with α˚α “ 1,
at most one of which is multiplicative. Hint: Define α recursively.
b) Considering the power series of p1 ´ xq´1{2, show that one choice for α is given by

αppnq “ p2nq!
4npn!q2

, extended multiplicatively to all integers.

Problem 3. a) Let a, n P N. Show that

ÿ

d|n

aωpdq “ τpnaq.

b) Show that
ř

d|n µpdqτpdq “ p´1qωpnq.
c) Show that the sum of the primitive n-th roots of unity equals µpnq (in particular, it
vanishes unless n is squarefree):

ÿ

1ďmďn
pm,nq“1

e2πim{n “ µpnq.

Hint: Write the characteristic function on pm,nq “ 1 as
ř

d|pm,nq µpdq (why?).

Problem 4. Show that there exists C P R such that

ÿ

nďx

n´1{2 “ 2x1{2 ` C `Opx´1{2q.

Due: Tuesday, Oct 18



Solutions to Sheet 1

Exercise 1

1. We may choose an = (2n + 2)! + 2. Note that now 2 | (2n + 2)! + 2, 3 | (2n + 2)! + 3, etc.

2. We already know that π(x) ≤ M x
log(x) for some M > 0 and x > 2. We solve the exercise

by assuming that for all c > 0 there are only finitely many n ∈ N such that the interval
[n, n + c log(n)] does not contain a prime, which ultimately will result in a contradiction to the
statement above.

Let us make a choice for c and count the number of primes in [x, 2x], for some large number x.
We trivially obtain

π(2x) − π(x) ≤ M
2x

log(2x) .

By our assumption, if x is large enough, there is no n ∈ N∩[x, 2x] such the interval [n, n+c log(n)]
does not contain a prime. Let us define numbers ak such that a0 = [x]+1, ak+1 = ak +c log(ak).
Further, let N ∈ N be defined via aN−1 ≤ 2x < aN . As every interval [ak, ak+1] contains a
prime, this yields the estimate N ≤ π(2x)−π(x). Also, for k < N we have ak+1−ak ≤ c log(2x).
This yields the estimate

x

c log(2x) ≤ N ≤ π(2x) − π(x) ≤ 2M
x

log(2x) ,

which is a contradiction once we choose c < 1
2M .

Notes after correcting.

• Main reason for point-loss: Messy write-ups

• Common mistake: Whenever we have inequalities a ≤ b and c ≤ d, we cannot deduce
a − c ≤ b − d. For that reason, we cannot effectively bound π(x + h) − π(x) for small
values of h by only knowing an upper bound for π.

• f(x) = O(g(x)) does not imply that f(x)
g(x) approaches some value C ∈ R as x → ∞. Rather,

it implies that the absolute value of this fraction is bounded.

Exercise 2

1. Via α⋆α = 1, we obtain α(1) = ±1. Having defined α(n) for values n ≤ N , α(N) is uniquely
determined by the equation

1 =
∑
d|N

α(d)α(N/d) = 2α(N) +
∑

d|N,d ̸=1,N

α(d)α(N/d).

Any choice of α(1) thereby extends to an arithmetic function with α ⋆ α = 1, and α cannot be
multiplicative if α(1) ̸= 1.

2. We set α(1) = 1 define α(pn) via the taylor series expansion of (1 − x) −1
2 :∑

n∈N
α(pn)xn = (1 − x)

−1
2
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(Note that (1 − x) −1
2 is holomorphic in some neighbourhood around 0) and extend α to a

multiplicative function via α(n) = ∏
p α(pvp(n)). By the formula for multiplying taylor series,

we find ∑
n∈N

xn = 1
1 − x

=
( 1

1 − x

)2 1
2

=
∑
k∈N

xk
∑

0≤l≤k

α(pl)α(pk−l).

After equating coefficients, this gives∑
0≤l≤k

α(pl)α(pk−1) = 1,

i.e. α ⋆ α = 1. (Note that α and 1 are multiplicative, so it suffices to check the equality on
prime-powers). Basic analysis also reveals that α is now given by α(pn) = (2n)!

4n(n!)2 , as demanded
by the exercise.

Notes after correcting.

• Part 1 was relatively easy.

• For part 2, one can also use that α(pn) = (−1)n
(− 1

2
n

)
and deduce α ⋆ α = 1 using formulas

for binomial coefficients. This does not use generating functions, but it is messy.

Exercise 3

1. It is easily seen that both sides are multiplicative, and we may reduce to the case n = pk, p
prime. The LHS becomes 1 + ak, the RHS becomes 1 + ak too, and we are done.

2. Again, both sides are multiplicative. (For the RHS, note that the product and the convolution
of any two multiplicative functions is multiplicative, and that RHS = 1 ⋆ (µτ).) For n = 1, we
find LHS = RHS = 1. For prime powers n = pk with k ≥ 1, we find

LHS = µ(p0)τ(p0) + µ(p1)τ(p1) + µ(p2)τ(p2) + · · · + µ(pn)τ(pn)︸ ︷︷ ︸
=0 as µ(pk) = 0 for k ≥ 2.

= 1 − 2 = −1.

As in this case we also have RHS = −1, we are done.

3. We write e(θ) for e2πiθ. We first get rid of the condition (m, n) = 1 via adding the term

η((m, n)) = (1 ⋆ µ)((m, n))

to each summand, obtaining

LHS =
∑

1≤m≤n and (m,n)=1
e(m/n)

∑
d|(m,n)

µ(d).

We change the order of summation, bringing d to the outer sum, writing m = dk for d | n. This
gives

LHS =
∑
d|n

µ(d)
∑

k≤n/d

e( k
n/d).

Now the inner sum goes over all n/d-th roots of unity, and thereby equals 0 whenever n/d > 1.
Hence we find LHS = RHS, as desired.

Notes after correcting.
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• Part 2 can be done in multiple ways, one can for example use binomial coefficient stuff to
check the identity directly (for general n and not only prime-powers).

• The trick used in part 3 is quite commonly used and should be added to your Analytic
number theory toolkit!

Exercise 4

We use summation by parts, setting an = 1 and g(x) = 1√
x
. We find

∑
1≤n≤x

1√
n

= [x]√
x

+ 1
2

∫ x

1

[t]
t

3
2

dt =
√

x − {x}√
x

+ 1
2

∫ x

1

1√
t

− {t}
t3/2 dt.

We have {x}/
√

x = O(x− 1
2 ),

1
2

∫ x

1

1√
t

dt = [
√

t]x1 =
√

x − 1

and
1
2

∫ x

1

{t}
t3/2 dt = 1

2

∫ ∞

1

{t}
t3/2 dt − 1

2

∫ ∞

x

{t}
t3/2 dt.

Here the first integral converges, and the second integral lies within O(x−1/2). The claim follows,
with

C = 1
2

∫ ∞

1

{t}
t3/2 dt − 1.

Notes after correcting.

• Common mistake: Errors while calculating the integral (but I am sure this will get better
as the course progresses).

Max von Consbruch, email: s6mavonc@uni-bonn.de. Date: November 30, 2022
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Prof. Dr. Valentin Blomer winter term 2022/23

Analytic Number Theory

Problem Set 2

Problem 1. A number n P N is called squarefull if every prime divisor of n occurs
at least with multiplicity 2. Write down all squarefull numbers ď 100 that are not perfect
squares.

Show that every squarefull number n can be written uniquely in the form n “ a2b3 with
b squarefree and conclude that

ÿ

n squarefull

1

ns
“
ζp2sqζp3sq

ζp6sq
.

Problem 2. Write
ÿ

aPN

ÿ

bPN

pa, bq

asbt

in terms of the Riemann zeta function. Here pa, bq denotes the greatest common divisor. In
what region ps, tq P Cˆ C does the double series converge absolutely?
Hint: Sort the double sum by the value d “ pa, bq.

Problem 3. In <s ą 1 let

ψpsq “ 1´
1

2s
`

1

3s
´

1

4s
. . . and ψ̃psq “ 1`

1

2s
´

2

3s
`

1

4s
`

1

5s
´

2

6s
. . .

a) Show that ψpsq “ p1´ 21´sqζpsq and ψ̃psq “ p1´ 31´sqζpsq.
b) Show that ψpsq and ψ̃psq converge (conditionally) in <s ą 0 (use (1.11)).
c) Conclude from the first identity in part a) that ζpsq can be extended meromorphically to
the region <s ą 0 with poles at most in the set 1` 2πi

log 2Z. Conclude an analogous statement
from the second identity.
d) Show that log 2{ log 3 is irrational and conclude that ζ is holomorphic in <s ą 0 with
the exception of a pole at s “ 1 (use (1.13) to deduce that this pole exists).

Problem 4. Show
ř

nďx φpnq{n “ ζp2q´1x`Oplog xq. Hint: prove and use the convo-
lution formula φpnq{n “

ř

d|n µpdq{d.

Due: Tuesday, Oct 25



Solutions to Sheet 2

Exercise 1

1. The squarefull non-squares up to onehundred are 8, 27, 32, 72.

2. It suffices to show that any squarefull prime power can be written uniquely as pk = a2b3

with b square-free. But this is the same as writing k = 2a + 3b with 0 ≤ b ≤ 1, and this is
possible in a unique way once k ≥ 2.

3. Using the above and that b is square-free iff µ2(b) = 1, we may write

∑
n squarefull

n−s =
∑
a,b

µ2(b)
a2sb3s

= ζ(2s)
∑

b

µ2(b)b−3s.

We can extend the Dirichlet series of µ2 into an Euler product, obtaining

∑
n∈N

µ2(n)n−s =
∏
p

(
1 + p−s)

=
∏
p

(1 − p−s)−1

(1 − p−2s)−1 = ζ(s)
ζ(2s) .

(In the second-to-last equality we used (1 + x)(1 − x) = 1 − x2.) We find
∑

b

µ2(b)b−3s = ζ(3s)
ζ(6s) ,

done.

Exercise 2

This is just a messy calculation. We somehow want to get of the (a, b)-symbol in the sum. We
do so by using that given a, b ∈ N, we find unique coprime numbers k, l with a = k(a, b) and
b = l(a, b). Now summing over all possible gcds d yields

∑
a,b

(a, b)
asbt

=
∑

d

d

ds+t

∑
k,l∈N coprime

k−sl−t = ζ(s+ t− 1)
∑
k,l

k−sl−t
∑

e|(k,l)
µ(e)

where we rephrased the coprimality condition on k and l using the trick from the last sheet.
Now we rewrite ∑

k,l

k−sl−t
∑

e|(k,l)
µ(e) =

∑
e

µ(e)
∑
k,l

(ke)−s(le)−t = ζ(s)ζ(t)
ζ(s+ t) ,

obtaining ∑
a,b

(a, b)
asbt

= ζ(s+ t− 1)ζ(s)ζ(t)
ζ(s+ t) .

Tracing through this calculation, we find that it is sufficient for absolute convergence to have
ℜ(s) > 1 and ℜ(t) > 1. These conditions are easily seen to be necessary too (the sub-sums with
a = 1 or b = 1 diverge otherwise).

Notes after correcting.
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• Even though it is easily seen that the double sum cannot converge absolutely whenever
(say) ℜ(s) ≤ 1, this does immediately follow from the divergence of the series in the ζ-
representation! The reason is that it is that we split the series in the first equality. It is
possible to split a convergent series into divergent ones, as for example∑

n∈N
0 =

∑
n∈N

(1 − 1) ̸=
∑

n

1 −
∑

n

1.

Exercise 3

1. We have
ψ(s) =

∑
n

n−s − 2
∑

n

(2n)−s

and
ψ̃(s) =

∑
n

n−s − 3
∑

n

(3n)−s.

2. Using the Leibniz criterion, we see that the series converge conditionally on the positive real
line, and thereby for ℜs > 0 by theorem (1.10). Alternatively, one can use (1.11) to see that
the abscissa of convergence is given by

σ0 = lim sup
N→∞

log
∣∣∣∑n≤N (−1)n

∣∣∣
logN = 0.

3. As both ψ and ψ̃ are holomorphic in ℜs > 0, ζ can only have a pole whenever (1 − 21−s)
and (1 − 31−s) vanish. But this is the case whenever

1 = 21−s = e(log 2)(1−s) ⇔ (log 2)(1 − s) ∈ 2πiZ

and
1 = 31−s = e(log 3)(1−s) ⇔ (log 3)(1 − s) ∈ 2πiZ.

4. If log 2/ log 3 = p/q was rational, we’d find that 2q = 3p, contradiction. Hence the two sets
(log 2)−1(2πiZ) and (log 3)−1(2πiZ) have intersection the set {0}. Thereby, ζ cannot have a
pole away from s = 1. There it has a pole from a theorem in the lecture, and it is a simple pole
as (21−s − 1) has a simple zero at s = 1.

Exercise 4

We know that the d-th cyclotomic polynomial Φd(x) has degree φ(d), and that ∏
d|n Φd(x) =

xn − 1. Hence ∑
d|n

φ(d) =
∑
d|n

deg Φd = deg

∏
d|n

Φd

 = deg(xn − 1) = n,

hence (by Möbius-inversion)

φ(n) = (µ ⋆ id)(n) =
∑
d|n

n

d
µ(d).
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Now we find ∑
n≤x

φ(n)/n =
∑
n≤x

1
n

∑
d|n

n

d
µ(d) =

∑
d≤x

µ(d)
d

∑
k:kd≤x

1 =
∑
d≤x

µ(d)
d

[
x

d

]
.

We write [x/d] = x/d+O(1) and use that µ(d) ∈ {−1, 0, 1}. This gives

∑
d≤x

µ(d)
d

[
x

d

]
=

∑
d≤x

µ(d)
d

x

d
+O

∑
d≤x

1
d

 =
∑
d≤x

µ(d)
d

x

d
+O(log x)

(by approximating the n-th harmonic number with the logarithm) and we have

∑
d≤x

µ(d)
d

x

d
= x

∞∑
d=1

µ(d)d−2 +O

x ∑
x<d<∞

d−2

 = xζ(2)−1 +O(1).

One can show the estimate ∑
x<d<∞ d−2 ≪ x−1 using the inequality

∑
x<d<∞

d−2 ≤
∫ ∞

x−1
t−2 dt = O((x− 1)−1) = O(x−1).

Done.

Notes after correcting.

• The convolution formula can also be obtained formally by writing

φ(n) =
∑

k≤n and (k,n)=1
1 =

∑
k≤n

∑
d|(k,n)

µ(d)

and reordering sums.

Max von Consbruch, email: s6mavonc@uni-bonn.de. Date: November 30, 2022
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Prof. Dr. Valentin Blomer winter term 2022/23

Analytic Number Theory

(half) Problem Set 3

Problem 1 & 2. In this exercise we want to classify all real primitive Dirichlet char-
acters. As a preparation, it’s good to refresh your knowledge on the structure of pZ{nZq˚
and quadratic reciprocity.
a) Let p be an odd prime. Show that there is exactly one real primitive character modulo
p and no real primitive character modulo pr for any r ě 2.
b) Show that there is no real primitive character modulo 2, exactly one real primitive char-
acter χ´4 modulo 4, exactly two real primitive characters χ8, χ´8 modulo 8, and no real
primitive character modulo 2r, r ą 3. Write down the values of χ´4, χ8 and χ´8.
c) Let n “ rs with pr, sq “ 1. Show that a Dirichlet character χ modulo n factors uniquely
into a product of a Dirichlet character modulo r and a Dirichlet character modulo s. These
two are primitive if and only if χ is primitive.
d) For n P N, describe all real primitive characters modulo n.
e) A fundamental discriminant is an integer D such that

D ” 1 pmod 4q, D squarefree

or
D ” 0 pmod 4q, D{4 squarefree, D{4 ” 2 or 3 pmod 4q.

(These are exactly the discriminants of quadratic extensions over Q.) For a fundamental
discriminant D define a function (Kronecker symbol) χD : ZÑ t´1, 0, 1u by

χDppq “

ˆ

D

p

˙

, p odd prime

χDp2q “

$

’

&

’

%

0, D ” 0 pmod 4q

1, D ” 1 pmod 8q

´1, D ” 5 pmod 8q

χDp´1q “ sgnpDq

χDpabq “ χDpaqχDpbq for all a, b P Z.

Show that the real primitive characters are precisely the characters χD for D a fundamental
discriminant.

Due: Fri, Oct 28



Solution to Sheet 3.

Facts from multiplicative number theory.

Given some n = pe1
1 · · · per

r ∈ N, we want to investigate the structure of the multiplicative group
(Z/nZ)×. By the chinese remainder theorem we find

(Z/nZ)× ∼=
(

n∏
i=1

(Z/pei
i Z)

)×
∼=

n∏
i=1

(Z/pei
i Z)×,

so we really only care about the structure of (Z/peZ)×. There, the structure is given by

(Z/peZ)× ∼=


a cyclic subgroup of order φ(pe) if p is odd
⟨3⟩ if p = 2 and e ≤ 2
±⟨5⟩ ∼= Z/2Z × Z/2e−2Z if p = 2 and e ≥ 3.

A generator of F×
p , or more generally, a generator of (Z/peZ)× is called a root of unity. We have

the Legendre symbol, which for a ∈ Z and an odd prime p is given by

(
a

p

)
=


0 if p | a

(−1) if there is no solution mod p to x2 = a

1 otherwise.

It is multiplicative in a, hence it yields a character (Z/pZ)× → C×. The subgroup of quadratic
residues mod p is given by Ker

((
−
p

))
= ⟨ϖ2⟩ for ϖ a root of unity. Quadratic reciprocity states

that for two odd primes p, q, we have(
p

q

)
= (−1)

p−1
2 · q−1

2

(
q

p

)
,

and there are the supplementary laws(−1
p

)
= (−1)

p−1
2 and

(2
p

)
= (−1)

p2−1
8 .

Given a finite abelian group G, we define the group of characters of G as

Ĝ = HomAb(G,C×) = HomAb(G, S1).

Given a cyclic group G ∼= Z/nZ, there is an isomorphism G ∼= Ĝ given by a 7→ (1 7→ ζa
n),

where ζn is an n-th root of unity. As we also have Ĝ ⊕ Ĥ = Ĝ ⊕ H, this shows that there are
isomorphisms G ∼= Ĝ for all finite abelian groups1.

1The first isomorphism is the universal property of the direct sum: We have

HomAb(G ⊕ H,C×) ∼= HomAb(G,C×) ⊕ HomAb(H,C×).

Remember that every finite group is a finite product (equivalently, finite direct sum) of cyclic groups.

1



Exercise 1 & 2.

1. Note that the real characters are exactly those χ : (Z/pZ)× → C× with χ2 = 1. As p is odd,
there are exactly two solutions to x2 = 1, hence there are exactly 2 real characters mod p, one
of which is the trivial one (induced by the principle character mod 1), and the other is given
by the legendre symbol. The same reasoning goes through mod pe for e ≥ 2 (the multiplicative
group is cyclic of even order), but now the characters are induced from characters mod p.

2. For n = 2r, we find again that the real Dirichlet characters are in bijection with the set
{x ∈ Z/nZ | x2 − 1 = 0}. By the structure of the multiplicative group given above, this set has
1 element if r = 1, it has 2 elements if r = 2 and 4 elements if r ≥ 3. We find:

• The multiplicative group of Z/2Z is trivial, so there is only the character given by 1 7→ 1,
which is induced by the principle character.

• On Z/4Z we have again the principle character and the primitive character χ−4 uniquely
defined via χ−4(−1) = −1.

• On Z/8Z we have the principle character, the one induced by χ−4 and the two characters
χ±8, where χ±8(3) = ∓1, χ±8(5) = −1 and χ±8(7) = ±1.

3. We inspect the map

µ : ̂(Z/rZ)× × ̂(Z/sZ)× → ̂(Z/nZ)× (χ1, χ2) 7→ χ1χ2.

We claim that this map is injective. Indeed, assume that we are given two characters χ1 mod
r and χ2 mod s such that for all m ∈ N,

χ(m) = χ1(m mod r)χ2(m mod s).

Then whenever we are given m ∈ N such that m ≡ 1 mod s, we find

χ(m) = χ1(m),

and similarly for χ2. But the chinese remainder theorem asserts that these equalities already
define χ1 and χ2 uniquely: For any a ∈ (Z/rZ)×, there is some m ∈ N such that m ≡ a mod r
and m ≡ 1 mod s. Now µ is an injective map of sets with the same cardinality, hence bijective.

It remains to show that χ1 and χ2 are primitive iff χ is. Suppose first that χ1 was not primitive,
i.e., has conductor d < r. Then we can write χ1 = χ̃χ0,r where χ̃ is a character mod d and χ0,r

is the principal character mod r. Now χ′ = χ̃χ2 is a character modulo ds and induces χ, since

χ = χχ0,rs = χ1χ2χ0,rs = χ̃χ0,rχ2χ0,rs = χ′χ0,rχ0,rs = χ′χ0,rs.

There is a neat way to now show the converse. Let φ2(n) denote the number of primitive
characters mod n. For any d | n, the set of primitive characters mod d is in bijection with the
characters mod n of conductor d, so we find

φ(n) = # ̂(Z/nZ)× =
∑
d|n

φ2(n) = (1 ⋆ φ2)(n),

implying that φ2 = µ ⋆ φ by moebius-inversion. Hence φ2 is multiplicative. We have shown
alrady that the inverse of µ restricts to a (necessarily) injective map

µ−1 : {primitive characters mod n} → {pr. characters mod r} × {pr. characters mod s}.

2



By multiplicity of φ2, this is a injective map of sets of the same cardinality, therefore µ−1 is a
bijection, and we are done.

Alternatively we can calculate this directly. Assume that χ1 and χ2 are primitive. Choose a
character χ̃ mod d that induces χ, so we may write

χ1χ2 = χ̃χ0,rs = (χ̃1χ0,r)(χ̃2χ0,s),

where χ̃1 is a character of conducter d1 | r and χ̃2 is a character of conducter d2 | s. But by
uniqueness of χ1 and χ2, we find χ1 = χ̃χ0,r and χ2 = χ̃χ0,s, implying d = rs by primitivity of
χ1 and χ2.

4. Writing n = 2rq with q odd, we find that the number of primitive real characters mod n is
given by 

1 if r = 0 and q square-free,

0 if r = 1 and q square-free,

1 if r = 2 and q square-free,

2 if r = 3 and q square-free,

0 if r ≥ 4 or q not square-free.

5. Clearly the product of two fundamental discriminants (FDs) is again a FD, and we have
χD1D2 = χD1χD2 . Also, given a fundamental discriminant D with |D| = d1d2 and (d1, d2) = 1,
there are fundamental discriminants D1, D2 with di = ±Di and D1D2 = D. So we can reduce
to the case where |D| = pr is a prime power. As a first reality check, we find that if p is odd,
the only fundamental discriminant of this type is D = (−1)

p−1
2 p, in which case χD is given by

the unique real primitive character, given by (using quadratic reciprocity)

χD(q) =
(

(−1)(p−1)/2p

q

)
=
(

q

p

)
.

There are no FDs with |D| = 2 or |D| = 2r with r ≥ 4. If |D| = 4 there is one (D = −4), and
if n = 8 there are two (D = ±8). Using quadratic reciprocity and the supplementary laws, it is
easily seen that these are exactly the characters described above.

Max von Consbruch, email: s6mavonc@uni-bonn.de. Date: November 30, 2022
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Prof. Dr. Valentin Blomer winter term 2022/23

Analytic Number Theory

Problem Set 4

Problem 1. Prove Corollary (2.7).

Problem 2. Prove Lemma (2.9). Hint: Consider functions of the type fpxq “
#

e´1{x
2
, x ą 0

0, x ď 0
and gpxq “ fpxq{pfpxq ` fp1´ xqq.

Problem 3. Show that the Polya-Vinogradov inequality is essentially optimal: for a
primitive character χ modulo q one has

max
xě1

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

nďx

χpnq

ˇ

ˇ

ˇ

ˇ

ˇ

ě
1

2π

?
q.

Hint: Apply partial summation to the definition of the Gauss sum τpχq (two lines).

Problem 4. Let pq1, q2q “ 1 and let χ1 modulo q1 and χ2 modulo q2 be two Dirichlet
characters (not necessarily primitive). Show that τpχ1χ2q “ τpχ1qτpχ2qχ1pq2qχ2pq1q.
Hint: Chinese remainder theorem

Due: Tue, Nov 8



Solution to Sheet 4.

Problem 1

a) Let g(x) = f(qx + a), so that ∑
n≡a (mod q)

f(n) =
∑
m∈Z

g(m).

We want to apply Poisson summation to g. The results of lemma (2.3) directly give that

ĝ(y) = 1
q

e

(
ya

q

)
f̂

(
y

q

)
.

The claim follows, as
∑
m∈Z

g(m) =
∑
m∈Z

ĝ(m) = 1
q

∑
m∈Z

e

(
ma

q

)
f̂

(
m

q

)
.

b) We would like to apply Poisson summation again, however we cannot calculate the "Fourier
transform" of fχ, as, χ is only defined on integers. We can abuse that χ is periodic though,
rewriting ∑

m∈Z
f(m)χ(m) =

∑
a (mod q)

χ(a)
∑

m≡a (mod q)
f(m).

Applying Poisson summation to the inner sum (we already did this in part a)) gives

∑
m∈Z

f(m)χ(m) = 1
q

∑
a (mod q)

χ(a)
∑
m∈Z

e

(
ma

q

)
f̂

(
m

q

)
.

Reordering sums, we obtain

1
q

∑
a (mod q)

χ(a)
∑
m∈Z

e

(
ma

q

)
f̂

(
m

q

)
= 1

q

∑
m∈Z

f̂

(
m

q

) ∑
a (mod q)

χ(a)e
(

ma

q

)
= 1

q

∑
m∈Z

f̂

(
m

q

)
τ(χ)χ(m) = τ(χ)

q

∑
m∈Z

f̂

(
m

q

)
χ(m).

Notes after correcting.

• In part a), instead of using the results from the lecture, we can also obtain the formula
for the fourier transform directly. Setting g(x) = f(qx + a) and substituting u = qx + a,
we obtain

ĝ(y) =
∫
R

f(qx + a)e(−xy) dx = 1
q

∫
R

f(u)e(−uy
q + ay

q ) du = 1
q

e(ay
q )f̂(y

q ).
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Problem 2

We do as the hint commands. Let

f(t) =
{

e−1/t2
t > 0

0 else.

Then one easily checks that f is smooth and non-negative. Now we put g(t) = f(t)
f(t)+f(1−t) , which

is still smooth and non-negative. We clearly have g(t) = 0 if t < 0, g(t) ∈ [0, 1] for t ∈ [0, 1] and
g(t) = 1 for t > 1. Finally, define

h(t) = g

(
t − X + Z

Z

)
− g

(
t − X − Y

Z

)
.

This satisfies supp(h) ⊂ [X − Z, X + Y + Z] and h(t) = 1 for t ∈ [X, X + Y ]. We still need to
check that ∥f (j)∥1 ≪ Z1−j for all j ∈ N. One could expect this to be really messy as calculating
the higher derivatives of h seems horrible. However, we just need that the j-th derivative of h
is given by

h(j)(t) = Z−j
(
g(j)

(
t−X+Z

Z

)
− g(j)

(
t−X−Y

Z

))
.

As h(j) vanishes everywhere except [X − Z, X] and [X + Y, X + Y + Z], we obtain by a linear
change of variables

∥h(j)∥1 =
(∫ X

X+Z
+
∫ X+Y +Z

X+Y

) ∣∣∣h(j)(t)
∣∣∣ dt = 2Z1−j

∫ 1

0

∣∣∣g(j)(t)
∣∣∣ dt ≪j Z1−j .

Problem 3

As the hint commands, we apply partial summation to the definition of τ(χ), obtaining

|τ(χ)| =
q∑

h=1
χ(h)e(h/q) = e(q/q)

q∑
h=1

χ(h) − 2πi
q

∫ q

1
e(t/q)

∑
h≤t

χ(h) dt.

As χ ̸= χ0, the sum ∑q
h=1 χ(h) vanishes. We also know by theorem (1.23) that |τ(χ)| = √

q.
Let M deonte the supremum of the absolute values of ∑h≤x χ(h) for varying x (By Polya-
Vinogradov, M < ∞). Then we obtain

q3/2

2π
=

∣∣∣∣∣∣
∫ q

1
e(t/q)

∑
h≤t

χ(h) dt

∣∣∣∣∣∣ ≤
∫ q

1

∣∣∣∣∣∣
∑
h≤t

χ(h)

∣∣∣∣∣∣ dt ≤ (q − 1)M,

which is even a tad stronger than what we had to show.

Problem 4

Let’s just plug in the definition and look at what we have here.

τ(χ1χ2) =
∑

h (q)
χ1(h)χ2(h)e(h/q),
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where q = q1q2. By the chinese remainder theorem, taking residues mod q gives a bijection

{h1q2 + h2q1 | 1 ≤ hi ≤ qi} → Z/qZ.

Thus we may rewrite the sum above as

τ(χ1χ2) =
∑

1≤h1≤q1

∑
1≤h2≤q2

χ1(h1q2 + h2q1)χ2(h1q2 + h2q1)e(h1q2+h2q1
q ),

and the claim follows after a few manipulations:∑
1≤h1≤q1

∑
1≤h2≤q2

χ1(h1q2 + h2q1)χ2(h1q2 + h2q1)e(h1q2+h2q1
q )

=
∑

1≤h1≤q1

∑
1≤h2≤q2

χ1(h1q2)χ2(h2q1)e(h1q2
q )e(h2q1

q )

=

χ1(q2)
∑

1≤h1≤q1

χ1(q2)e(h1
q1

)

χ2(q1)
∑

1≤h2≤q2

χ2(q1)e(h2
q2

)

 = χ1(q2)τ(χ1)χ2(q1)τ(χ2).

Max von Consbruch, email: s6mavonc@uni-bonn.de. Date: November 30, 2022
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Prof. Dr. Valentin Blomer winter term 2022/23

Analytic Number Theory
3
4 Problem Set 5

Problem 1. Let χ1 modulo q1 and χ2 modulo q2 be two Dirichlet characters with
conductors d1, d2. Assume that pq1, q2q “ 1. Show that the conductor of χ1χ2 is d1d2. Is
this correct without the coprimality assumption?

Problem 2. For A P N, x ą 0 show that

ż

<s“´A` 1
2

Γ psqxsds !
x´A`1{2

pA´ 1q!

where the implied constant is absolute (independent of A and x). Hint: Stirling’s formula
cannot be applied immediately (why?). Use the recurrence relation of the Gamma-function
A times.

Problem 3. Let αj , 1 ď j ď d be distinct complex numbers, p a prime, and for <s
sufficiently large write

d
ź

j“1

ˆ

1´
αj

ps

˙´1

“

8
ÿ

k“0

βpkq

pks
.

Show that βpkq satisfies a d-term recurrence, i.e. there are d complex numbers c0, . . . , cd´1
such that c0βpνq ` . . . ` cd´1βpν ` d ´ 1q “ βpν ` dq for all ν P N. Hint: you see more if
you write x “ p´s.

Due: Tue, Nov 15



Solution to Sheet 5.

Problem 1

We have basically solved this already on sheet 3. Note that as d1 | q1 and d2 | q2, we have
(d1, d2) = 1, so (by sheet 3) there are primitive characters ψi mod di with χi = ψiχ0,qi (here
again χ0,qi is the principal character mod qi) whose product ψ = ψ1ψ2 is a primitive character
mod d1d2. Modulo q, this reveals

χ1χ2 = (χ0,q1ψ1)(χ0,q2ψ2) = χ0,q1q2ψ,

hence ψ is induced by a primitive character mod d1d2.

It is easily seen that the coprimality condition is necessary. Take any real character χ mod q
for example, then χ2 = 1 and has conducter 1 ̸= q.

Problem 2

We have to show the bound ∫
(−A+ 1

2 )
Γ(s)xs ds ≪ x−A+1/2

(A− 1)! .

Note that the integral exists by the rapid decay of Γ along vertical lines. However, we cannot
apply Stirling’s formula to bound the integral directly as Stirling a priori only gives uniform
bounds in regions of the form |arg(s) − π| ≥ δ > 0. We can however apply stirlings formula if
we apply the recurrence sΓ(s) = Γ(s+ 1) repeatedly:∫

(−A+1/2)
Γ(s)xs ds ≪

∫
(−A+1/2)

|Γ(s)xs| ds ≪ x−A+1/2
∫

(1/2)
|Γ(s−A)| ds

= x−A+1/2
∫

(1/2)

∣∣∣∣ Γ(s)
(s−A+ 1) · · · (s− 1)

∣∣∣∣ ds ≤ x−A+1/2

(A− 1)!

∫
(1/2)

|Γ(s)| ds.

Notes. Once we know this inequality, we actually can do better: Remember that Γ has poles
at the negative integers, the residue at −n is given by (−1)n

n! . Hence for (large) T > 0, we have
that∫ 1/2−A+iT

1/2−A−iT
Γ(s)xs ds = 2πi (−x)−A

A! +
∫ −1/2−A+iT

1/2−A−iT
Γ(s)xs ds+O

(∫ −1/2−A−iT

1/2−A−iT
Γ(s)xs ds

)
.

By the rapid decay of Γ, the horizontal integral vanishes as T → ∞, and we can bound the
vertical integral using what we showed before, applied to A+ 1. This yields∫

(−A+1/2)
Γ(s)xs ds = 2πi (−x)−A

A! +O

(
x−A−1/2

A!

)
.

In fact, as for every x > 0 the fraction xA/A! tends to zero as A → ∞, we may repeat this as
often as we want, obtaining

1
2πi

∫
(−A+1/2)

Γ(s)xs ds =
∞∑

k=A

(−x)−k

k! = e− 1
x −

A−1∑
k=0

(−x)−k

k! .

1



The equation for A = 0 is nothing new! As Γ(s) is holomorphic for ℜs > 0 we already know
that M(e−x)(s) = Γ(s), so

e−x = 1
2πi

∫
(1/2)

M(e−x)(s)x−s ds = 1
2πi

∫
(1/2)

Γ(s)x−s ds.

Now replace x by x−1.

Problem 3

We substitute p−s = x to find the equivalent
∞∑

k=0
β(k)xk = 1

P (x) .

Where P (x) =
∏d

j=1(1 − αjx) =
∑d

i=0 aix
i (in particular, a0 = 1). Multiply both sides with P ,

revealing
∞∑

d=0
xd

d∑
k=0

β(d− k)ak = 1.

Equating coeffiecients gives that for k > 0,

d∑
k=0

akβ(d− k) = 0,

which, after subtracting β(d) on both sides and setting ci = −ai+1, gives the desired recurrence.

Max von Consbruch, email: s6mavonc@uni-bonn.de. Date: November 30, 2022
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Prof. Dr. Valentin Blomer winter term 2022/23

Analytic Number Theory

Problem Set 6

Problem 1. Write down the statements of (3.10) - (3.12) in the special case of the
Riemann zeta function an Dirichlet L-functions for primitive characters in full detail.

Problem 2. Compute ζp0q and show that ζpsq has no zeros on the real segment r0, 1q.
Hint for the second part: (1.9a).

Problems 3.-4. Show
ÿ

χ pmod qq

|Lp1{2, χq|4 ! q1`ε.

Where does this argument go wrong for the sixth moment?
Hint: Restrict to primitive characters of modulus q1 | q and estimate for each q1 separately.
Use (3.14) as a template. You have now four variables n1, n2,m1,m2, say, each of effective

length q
1{2
1 . Glue together two pairs of variables n1, n2, m1,m2 to two new variables n, m

of effective length at most q1, each of which is weighted by a divisor function.

Due: Tue, Nov 22



Solutions to Sheet 6.

Problem 1

Okay, we just go through everyting. For ζ(s) we have degree d = 1, conductor N = 1, root
number η = 1, κ1 = 0 and hence L∞(s) = π−s/2Γ(s/2). For L(s, χ) with a primitive Dirichlet
character χ mod q > 1 we have degree d = 1, conductor N = q, root number η = i−κτ(χ)q−1/2,
κ1 = κ and L∞(s) = π−s/2Γ( s+κ

2 ) where κ = 0 if χ is even and κ = 1 if χ is odd.

The functional equation now reads as follows.

Theorem 1 (Approximate functional equation for ζ). Let G(u) be any even function which is
holomorphic and bounded in |ℜ(u)| < 4 and normalized by G(0) = 1. Let X > 0. Then for
0 < σ < 1 we have

ζ(s) =
∑

n

n−sVs

(
n

X

)
+ πs−1/2 Γ((1 − s)/2)

Γ(s/2)
∑

n

ns−1V1−s(nX) − R

where
Vs(y) = 1

2πi

∫
(3)

G(u)Γ((s + u)/2)
Γ(s/2) (y

√
π)−u du

u

and
R = πs/2

Γ(s/2)
G(1 − s)

1 − s
X1−s − πs/2

Γ(s/2)
G(−s)

−s
X−s.

Completed Dirichlet L-functions are entire, so we get rid of R. As above, in the following κ
depends on the parity of χ.

Theorem 2 (Approximate functional equation for Dirichlet L-functions). Let G(u) be any
even function which is holomorphic and bounded in |ℜ(u)| < 4 and normalized by G(0) = 1.
Let X > 0. Then for 0 < σ < 1 we have

ζ(s) =
∑

n

χ(n)n−sVs

(
n

X
√

q

)
+ ϵ(s)

∑
n

χ(n)ns−1V1−s

(
nX
√

q

)

where
Vs(y) = 1

2πi

∫
(3)

G(u)Γ((s + u + κ)/2)
Γ((s + κ)/2) (y

√
π)−u du

u

and
ϵ(s) = i−κτ(χ)q−sπs−1/2 Γ((1 − s + κ)/2)

Γ((s + κ)2) .

As for (3.11), we have for ζ that C(s) = C0(s) = |s + 2|, for Dirichlet L-functions we find
C0(s) = |s + κ| + 2 and C(s) = q(|s + κ| + 2). As an aside, the 2 here is quite arbitrary and is
only there to make sure everything works out when |s| is small. We can plug this into (3.11),
finding (with G(u) = eu2) that for ζ we have that

yaV (a)
s (y) ≪a,A

(
1 + y√

|s| + 2

)−A

1



for ℜ(s) > 0 whereas for L(s, χ) we find

yaV (a)
s (y) ≪a,A

(
1 + y√

|s + κ| + 2

)−A

for ℜ(s) > −κ.

Lastly, the conditions for (3.12) are satisfied for both ζ(s) and L(s, χ), we have the convexity
bound

ζ(s) ≪ε,δ (|s| + 2)
1−σ

2 +ε

whenever |s − 1| ≥ δ (i.e., away from the pole) and similarly

L(s, χ) ≪ε (q |s + κ| + 2)
1−σ

2 +ε.

Again, it should be noted that the 2 is added artificially to have small |s| not mess everything
up. For large s, these vanish and we obtain (and should really read these as)

ζ(s) ≪ |s|
1−σ

2 +ε and L(s, χ) ≪ |qs|
1−σ

2 +ε .

Also, if we fix L, we can absorb the factor q into the implicit constant from ≪.

Problem 2

1. Calculating ζ(0). The simple pole of ζ(s) at s = 1 has residue 1, so we know that lims→1(s −
1)ζ(s) = 1. Writing the functional equation as ζ(s) = ∆(s)ζ(1 − s) gives

1 = lim
s→1

(s − 1)ζ(s) = lim
s→1

(s − 1)∆(s)ζ(0),

so we only need to evaluate the remaining term lims→1(s − 1)∆(s). We have

∆(s) =
Γ(1−s

2 )
Γ( s

2) πs−1/2.

It follows that ζ(0) = −1
2 as Γ(1/2) =

√
π and Γ((1 − s)/2) has residue −2 at 1 (think about

the Laurent expansion at 1 and remember that Γ has residue 1 at 0).

2. Showing that ζ(s) < 0 for s ∈ (0, 1). We have that

ζ(s) = s

s − 1 − s

∫ ∞

0
{t}t−s−1 dt.

This is negative. Hence ζ is negative in the interval [0, 1).

Problem 3

We want to follow the proof from (3.14) as closely as possible. The first difference is that we
sum over all characters, not just the primitive ones, but this does not make a difference: If we
know that ∑∗

χ(mod q)
|L(1/2, χ)|2 ≪ q1+ε

2



(where the star in the sum means that we sum over primitive characters, this notation is quite
common), we can easily deduce∑

χ(mod q)
|L(1/2, χ)|2 =

∑
d|q

∑∗

χ(mod d)
|L(1/2, χ)|2 ≤ τ(q) max

d|q

∑∗

χ(mod d)
|L(1/2, χ)|2 ≪ q1+ε

as τ(q) the number of divisors of q, satisfies τ(q) ≪ qε. The L∞ factor occuring in Vs only
depends on the parity of χ, so we further split the sum into odd and even parts. We want to use
the approximate functional equation with X = 1, s = 1/2 and G(u) = eu2 as in (3.11). Let’s
check what happens. We find

L(1/2, χ) =
∑

n

χ(n)
n1/2 V1/2(n/

√
N) + ϵ(1/2)

∑
n

χ(n)
n1/2 V1/2(n/

√
N) + R

where

• R = 0 as the completed L-function Λ(s, χ) is entire.

• The root number ϵ(1/2) has absolute value 1.

• The terms involving V = V1/2 can be bounded by V (y) ≪A (1 + y)−A. For all A > 0.

Also note that both sums are equal in absolute value. This is not too complicated! We plug it
in, using this time that |a + b|4 ≤ 8(|a|4 + |b|4) (this can be seen using Hölder’s inequality for
example), obtaining

∑∗

χ(mod q) even
|L(1/2, χ)|4 ≤ 16

∑∗

χ(q) even

∣∣∣∣∣∑
n

χ(n)
n1/2 V (n/

√
q)
∣∣∣∣∣
4

.

Similar to the proof of (3.14), we can complete the sum to go over all characters and open up
the sum, obtaining a fourfold sum which we can simplify using orthogonality relations on sums
over characters. In short, we get

· · · ≤ 16
∑
χ(q)

∣∣∣∣∣∑
n

χ(n)
n1/2 V (n/

√
q)
∣∣∣∣∣
4

= 16
∑

n1,n2,m1,m2

Vn1Vn2V m1V m2

(n1n2m1m2)1/2

∑
χ(q)

χ(n1+n2−m1−m2), (1)

where we wrote Vn = V (n/
√

q). The sum over χ does not vanish iff n1n2 ≡ m1m2 (mod q),
where it equals φ(q). As the hint suggests, we glue together n1 and n2, m1 and m2, which
leaves us with the taks of bounding terms of the form

(V ∗ V )(n) =
∑

n1n2=n

Vn1Vn2 .

We find for any A ≥ 1

(V ∗ V )(n) ≪
∑

n1n2=n

(
1 + n1√

q

)−A(
1 + n2√

q

)−A

≤
∑

n1n2=n

(
1 + n

q

)−A

≪ε nε
(

1 + n

q

)−A

.

With A = 1 + ε we calculate

(1) ≪ φ(q)
∑
n,m

(V ⋆ V )(n)(V ⋆ V )(m)
(nm)1/2 ≪ φ(q)

∑
n

∑
n≡m≥n

(1 + m
q )−1(1 + n

q )−1(mn)−1/2, (2)

and upon applying the bound φ(q) < q this is exactly the sum that arises in the end of the
proof of (3.14)! (I might add lines on how to bound this once I have time).

Max von Consbruch, email: s6mavonc@uni-bonn.de. Date: December 1, 2022
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Prof. Dr. Valentin Blomer winter term 2022/23

Analytic Number Theory

Problem Set 7

Problem 1. Prove Lemma 4.4.

Problem 2. - 3. a) Prove an asymptotic formula for

ÿ

n squarefull
nďx

1

with error term Opx1{4`εq. Hints: See Set 2, Problem 1. When you use Perron, shift to
<s “ 1{4 (picking up two poles!) and cut the vertical integral into dyadic pieces. Then use
Cauchy-Schwarz and (3.16).

b) Prove an asymptotic formula for

ÿ

n squarefull

e´n{x

with error term Opx1{6`εq. [The moral of this is: when you count with a smooth weight,
you get better error terms.]

Problem 4. Let apnq denote the number of isomorphy classes of finite abelian groups
of order n.

a) Show that n ÞÑ apnq is multiplicative, and show that apprq is the number of partitions
r “ r1 ` r2 ` . . . with r1 ě r2 ě . . . ą 0 for a prime p. Conclude that

ÿ

n

apnqn´s “ ζpsqζp2sqζp3sq ¨ ¨ ¨

for <s ą 1. Show in particular that the infinite product is aboslutely convergent.
b) Sketch a proof of

ÿ

nďx

apnq „ Cx, C “ ζp2qζp3qζp4q ¨ ¨ ¨ « 2.2948 . . .

for x Ñ 8. In particular, on average there are about 2.3 abelian group of given order.
(voluntarily:) Can you obtain an asymptotic formula with an explicit error term?

Due: Tue, Nov 29



Solutions to Sheet 7.

Problem 1

a - 2p) We have g(x) ≪ x−(−u+av) as x → 0 and g(x) ≪ x−(−u+bv) as x → ∞. Hence in
−u + av < Re(s) < −u + bv the mellin transform ĝ exists and is given by

ĝ(s) =
∫ ∞

0
xuf(xv)xs dx

x
= v−1

∫ ∞

0
f(y)y(s+u)/v−1 dy = v−1f

(
s + u

v

)
Now the RHS defines a holomorphic function in −u + a′v < Re(s) < −u + b′v.

b - 3p) Of course, knowing bounds for f does not imply any bounds for f ′. But knowing that we
can derive f , we can make use of partial integration. We have∫ ∞

0
f(x)xs−1 dx =

[
f(x)xs

s

]∞

0
− 1

s

∫ ∞

0
f ′(x)xs dx

By assumption, the boundary terms vanish for a < Re(s) < b, and the integral on the
RHS exists (if this is not clear, try to first approximate the integrals by truncated ones
from 1/T to T and let T → ∞). Hence ĝ (with g = f ′) exists in a + 1 < Re(s) < b + 1
(note the shift s 7→ s + 1 in the integral). Same argument as before gives continuation of
ĝ to a′ + 1 < Re s < b′ + 1.

c - 3p) By assumption f has compact support, so the Mellin Transform exists everywhere and
the same holds for the derivatives. We make use of what we showed in b) repeatedly,
obtaining

f̂(s) = (−1)N

s(s + 1) . . . (s + N − 1) ĝ(s + N) = (−1)N Γ(s)
Γ(s + N) ĝ(s + N)

where g = f (N). The first Γ-factor behaves (for fixed real part and large imaginary part
of s) like O(|s|−N ), so it remains to show that ĝ(s) is bounded with Im s → ∞. But the
integral from the mellin transform can be bounded in absolute values, as

|g(s)| ≤
∫ ∞

0

∣∣∣g(x)xs−1
∣∣∣ dx ≪

∫
|g(x)| xRe(s)−1 dx.

This is convergent, and independent of Im(s).

d - 2p) Calculation:

f̂ ⋆ h(s) =
∫ ∞

0
(f ⋆ h)(x)xs−1 dx =

∫ ∞

0

∫ ∞

0
f(t)h(x/t)t−1 dtxs−1 dx

=
∫ ∞

0
f(t)h(y)ts−1ys−1 dt dy,

as desired. We made use of the substitution y = x/t, i.e. dy = t−1 dx.

Problem 2&3

a - 15p) We want to apply Perron. Remember that we showed earlier that the Dirichlet series
attached to the characteristic function on the set of squarefull numbers is given by ζ(2s)ζ(3s)

ζ(6s) .
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Just as in one of the examples from the lecture, we apply Perron with c = 1 + 1/ log x and
T = xα for some fixed α ∈ (0, 1). The absolute value of the coefficients is ≤ 1 and we obtain

∑
n≤x sqfull

1 = 1
2πi

∫ c+iT

c−iT

ζ(2s)ζ(3s)
ζ(6s) xs ds

s
+ O(T −1x log x).

We want to shift the contour to the left and pick up residues along the way. The most important
tool to bound the vertical contribution is the moment bound, and this requires the real part
of the argument to be at least 1

2 . Hence we shift to Re s = 1
4 . The factor ζ−1(6s) is still

holomorphic here, so we only pick up the residues from ζ(2s) and ζ(3s). We obtain∑
n≤x sqfull

1 =

ζ(3/2)
ζ(3) x1/2 + ζ(2/3)

ζ(2) x1/3 +
(∫ 1/4−iT

c−iT
+
∫ 1/4+iT

1/4−iT
+
∫ c+iT

1/4+iT

)
ζ(2s)ζ(3s)

ζ(6s) xs ds

s
+ O(T −1x log x).

First, note that ζ−1(s) is bounded in Re s > 1 + δ, as∣∣∣ζ−1(s)
∣∣∣ =

∏
p

∣∣1 − p−s
∣∣ ≤

∏
p

(1 + p−1−δ) = ζ(2 + 2δ)
ζ(1 + δ) ≪δ 1.

So we disregard this factor from now on. Let us first start with the vertical part. Here we have
|xs| = x1/4, so the contribution is bounded by

≪ x1/4
∫ T

0

|ζ(1/2 + 2it)ζ(3/4 + 3it)|
1/4 + it dt.

We prove that the integral is bounded by xε. By splitting the integral into log x dyadic pieces
[M, 2M ] for M < T . It suffices to show that∫ 2M

M

|ζ(1/2 + 2it)ζ(3/4 + 3it)|
1/4 + it dt ≪ M1+ε.

The denumerator is (throughout) of size ≫ M , so we really only need to show that∫ 2M

M
|ζ(1/2 + 2it)ζ(3/4 + 3it)| dt ≪ M ε ≪ T ε

This is an immediate consequence of Cauchy-Schwartz and the moment bounds. Hence we can
conclude∫ T

0

|ζ(1/2 + 2it)ζ(3/4 + 3it)|
1/4 + it dt

≤
(∫ 1

0
+
∫ 2

1
+ · · · +

∫ 2⌊log2(T )⌋+1

2⌊log2(T )⌋

)
|ζ(1/2 + 2it)ζ(3/4 + 3it)|

1/4 + it dt ≪ log2(T )T ε ≪ T ε.

Next, we focus on the horizontal parts. Here, s−1 ≪ T −1, so the contributions become

≪ T −1
∫ c

1/4
|ζ(2(σ + iT ))ζ(3(σ + iT )| dσ ≪ T −1

∫ c

1/4
T max(1/2−σ,0)T max(1/2−3σ/2,0)xσ dσ.

This requires some bookkeeping, but splitting this into the parts (1/4, 1/3), (1/3, 1/2) and
(1/2, c) one quickly verifies that no term contriibutes more that x1+ε. To this end, we showed

∑
n≤x sqfull

1 = ζ(3/2)
ζ(3) x1/2 + ζ(2/3)

ζ(2) x1/3 + O

(
x1+ε

T
+ x1/4+ε

)
.
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The claim follows upon setting T = x3/4.

b - 5p) The good thing with smooth weights is that their mellin transforms usually decay
quickly along vertical lines and we do not have to worry about cutting off the integral. Perron’s
formula reveals with c > 1/2

∑
n squarefull

e−n/x = 1
2πi

∫
(c)

ζ(2s)ζ(3s)
ζ(6s) xsΓ(s) ds.

As Γ vanishes rapidly along vertical lines, we can shift the contour to Re s = 1/6 + ε and obtain

· · · = 1
2

ζ(3/2)
ζ(3) x1/2 + 1

3
ζ(2/3)
ζ(2) x1/3 + 1

2πi

∫
(1/6+ε)

ζ(2s)ζ(3s)
ζ(6s) xsΓ(s) ds.

The integral is absolutely convergent, hence gives an error of size O(x1/6+ε).

Remark: We will later prove that ζ(s) does not have zeroes in some neighbourhood of the line
Re s = 1, which in particular implies that there are no zeroes on the line itself. Hence we can
get even shift the contour onto Re s = 1/6, killing the +ε.

Problem 4

a - 6p) Every finite abelian group can be decomposed as a product of cyclic groups of prime-
power-order. Hence the number of isomorphism classes of abelian groups of order n gives a
multiplicative arithmetic function

a : N → N, n 7→ #({abelian groups of order n}/ ∼=).

If n = pr is a prime power, we find that a(n) is given by the number of (additive) partitions of
r. Indeed, to a partition

1 · a1 + 2 · a2 + 3 · a3 + · · · = r

we can associate a group (Z/pZ)a1 × (Z/p2Z)a2 × (Z/p3Z)a3 × . . . of order pr, and vice versa.
One quickly verifies (at least formally), that

∞∑
n=1

a(n)xn = (1 + x + x2 + . . . )(1 + x2 + x4 + . . . )(1 + x3 + x6 + . . . ) · · ·

and substituting x = p−s for varying p yields the desired formula
∞∑

n=1
a(n)n−s =

∏
p

∞∏
r=1

(1 − p−rs)−1 =
∞∏

r=1
ζ(rs).

The last step might demand clearification. Remember that a product
∏

an with an ̸= 0 con-
verges absolutely to something ̸= 0 iff the sum

∑
|an − 1| converges absolutely. In Re s > 1 + δ

we have the uniform bound

|1 − ζ(rs)| ≪
∞∑

n=2
nr(−1−δ) ≪δ 2−r,

so that which shows that indeed, the product converges absolutely and locally uniformly in
Re s > 1.
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b - 4p) The heuristic goes as follows. Let F be the Dirichlet series attached to a. By the
above, F is a holomorphic function for s > 1, but by the continuation of the first ζ-factor, we
find that F has a continuation to a meromorphic function on Re s > 1/2. (Aside: We can apply
the functional equation to as many ζ-factors as we want, yielding continuations to Re s > 1/n
for arbitrarily large n ∈ N. But F can never be meromorphically continued to all of C. This
is because there are poles at s = 1, 1/2, 1/3, . . . , which by the identity theorem implies that
F −1 = 0.) Now Perron’s Formula reads

∑
n≤x

a(n) = 1
2πi

∫
(c)

F (s)xs ds

s
,

and upon shifting the contour to 1 − ε we obtain

∑
n≤x

a(n) = xRess=1F (s) + 1
2πi

∫
(1−ε)

F (s)xs ds

s
.

The residue is given by C = ζ(2)ζ(3) · · · , and we’d hope that we would be able to approximate
the integral by something of size o(x).

Proving the asymptotic. Proving the asymptotic is quite challenging, as we would have to
find some bound on a(n) to apply (4.7). The convergence of

∑
n a(n)n−s for Re(s) > 1 gives

a(n) ≪ n1+ε, but there is no trivial way to get anything beyond that. But it turns out we
don’t need such bounds! Note that we really need to include a bound of a(n) in (4.7) because
we try to approximate a function that "jumps" (the LHS) with a function that is continuous in
x (the integral, at least as long as T = T (x) is continuous in x). But if we decide to inspect
the approximation away from the jumps of the LHS, we might be able to prove an error not
involving terms of the form O(maxn∼x |an|). This idea is sketched in the following.

Using a modified version of (4.7). The probably more sensible way to do this is to use a
modified version of (4.7): If we assume x ∈ 1

2 + N (more generally, x ∈ [δ, 1 − δ] + N works for
0 < δ < 1/2), we can copy the proof of (4.7), but the first summand Ax can be avoided. This
gives (with the same terminology as in (4.7)) the statement

∑
n≤x

an = 1
2πi

∫ c+iT

c−iT

∑
n∈N

an

ns
xs ds

s
+ O

(
xc

T

∑
n

|an|
nc

+ Ax
x log x

T

)
.

We can now follow the same strategy as usual, and in the end realize that T = xα can be chosen
an arbitrary power of x, which should ultimately yield a asymptotic with error O(x1/2+ε). (You
will need Ax = maxn∼x |an| ≪ x1+ε.) This is left as an exercise :)

The following solution introduces a new idea. We sacrifice a bit of error size, but get a smooth
ride when moving the integral to the left in exchange. You will realize we almost don’t have to
worry about messy calculations at all!

Proving the asymptotic using Cesàro-weights. Instead of trying to avoid the jumps, we
could also try to smooth out the LHS of (4.7). Instead of bounding

S0(x) =
∑
n≤x

a(n),

we try to bound
S1(x) =

∑
n≤x

a(n)(x − n) =
∫ x

1
S0(y) dy.

4



(These weights are called Cesàro weights). We hope to recover information about S0 afterwards.
Integrating Perron’s formula, we find that

S1(x) = 1
2πi

∫
(c)

F (s)xs+1 Γ(s)
Γ(s + 2) ds.

The Γ-factor is essentially bounded by |s|−2, at least for |s| > 2. Whenever σ > 1/2 + δ and
|t| > 1 we find

F (σ + it) ≪ |ζ(s)| ζ(1 + 2δ)ζ(3/2 + 3/2δ) · · · ≪ |t|
1−σ

2 +ε δ−1.

Hence we can shift the contour to Re s = 1/2 + δ, pick up a pole and the remaining integral
remains absolutely convergent. In formulas,

S1(x) = x2

2 C +
∫

(1/2+δ)
F (s)xs+1 Γ(s)

Γ(s + 2) ds = x2

2 C + Oδ(x3/2+δ).

Nice, this at least shows that there is an asymptotic on average. But how can we make use
of this? We also showed that the Lindelöf-Hypothesis is true on average, but we are far from
proving the Lindelöf-Hypothesis in general! What plays in our favor here is that S0 is non-
decreasing. Denote by E0(x) the error function S0(x) − Cx, and define E1 as the integral of
E0. Note that we have E1(x) ≪ x3/2+ε by the above. We also make a choice of some Q = xα

for α ∈ [0, 1] and get (using monotonicity of S0)

E1(x + Q) − E1(x) =
∫ x+Q

x
E0(t) dt ≥ Q(S0(x) − Cx − CQ) = QE0(x) + O(Q2).

But we also know that E1(x + Q) − E1(x) = O(x3/2+ε), implying

QE0(x) ≤ O(x3/2+ε + Q2).

This shows E0(x) ≤ O(x3/4+ε) once we choose Q = x3/4. A similar lower bound can be
established by inspecting

∫ x
x−Q E0(t) dt (exercise, haha). This proves S0(x) = Cx + O(x3/4+ε).

This really is remarkable, as this in particular implies that a(n) ≪ n3/4+ε, which is a bound we
did not know existed beforehand. Even more, this followed only from a bound on the vertical
growth of F (s) and the fact that a(n) ≥ 0. Also note that we by did not do as good as we could
have! We could have shifted further to the left and picked up more residues.

Max von Consbruch, email: s6mavonc@uni-bonn.de. Date: December 12, 2022
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Prof. Dr. Valentin Blomer winter term 2022/23

Analytic Number Theory

Problem Set 8

Problem 1. a) Show directly that

e´x “
1

2πi

ż

p1q
Γpsqx´sds

by shifting the contour to the left and picking up the residues. Hint: Use Problem 2 of Set 5.

b) Compute the polynomials P2 and P3 in Example (4.9) in terms of the Taylor coeffi-
cients of ζpsq at s “ 1. Compare with (1.6b) to compute the zero-th Taylor coefficient of
ζpsq.

Problem 2. a) Let b be the constant in (5.2) for the Riemann zeta-function. Show
that ζ 1p0q “ ´1

2 logp2πq and conclude that b “ 1
2p´γ ´ 2 ` logp4πqq « ´0.023 . . . .. Hint:

Use (5.2) with s “ 0 and Γ1p1q “ ´γ.
b) Conclude that |=ρ| ě 6 for all zeros of the Riemann zeta function. Hint: Use (5.3a)

Problem 3. a) Give a rigorous proof of Theorem 5.4.
b) Let ρ1 “ 1{2` iγ1, ρ2 “ 1{2` iγ2, . . . denote the (non-trivial) zeros of the Riemann

zeta function with 0 ă γ1 ă γ2 . . .. Here is a picture of

30
ÿ

j“1

cospβj log xq. (1)

5 10 15 20 25

-10

-5

5

with γ30 “ 101.318 . . . What do see? Explain!



Hint: No rigorous proof is required here, just a qualitative answer. Interpret the sum
(1) as the main term of the right hand side of the explicit formula with a suitable function
pwpsq. An interesting choice is the function

wpyq “ wS,xpyq “
S

2pπyq1{2
exp

ˆ

´

´S

2
log

´y

x

¯¯2
˙

.

Verify that pwpsq “ xs´1{2 exp

ˆ

´

s´1{2
S

¯2
˙

, so pwp1{2 ` iγq “ xiγ expp´pγ{Sq2q. Choose

S « 100, and convince yourself that for x ď 25, w is essentially a large peak at y “ x.

Problem 4. [exercise in partial summation] Conclude from (5.6) that

πpxq “

ż x

2

dt

log t
`O

´

x expp´c
a

log xq
¯

for some constant c ą 0.

Due: Tue, Dec 6



Solutions to Sheet 8.

Problem 1

a-4p) Look at sheet 5.

b-6p) The approximation in (4.9) reads∑
n≤x

dk(n) = xPk(log x) +O(x1−δ).

Reading the proof reveals that the main term is given by the residue

R := Ress=1
ζk(s)xs

s
= Ress=1Fk(s),

where for convenience Fk(s) := ζk(s)xs

s . Of course ζk(s) has a singularity of degree k at 1, and
we only need to calculate the (−1)st term of the Laurent expansion of F at 1. We have the
Taylor expansions

1
s

=
∞∑

n=0
(−1)n(s− 1)n = 1 − (s− 1) + (s− 1)2 +O((s− 1)3)

and

xs =
∞∑

n=0

x(log x)n

n! (s− 1)n = x+ x(log x)(s− 1) + 1
2x(log x)2(s− 1)2 +O((s− 1)3).

Let an denote the coefficients of the Laurent series of ζ at 1, i.e.

ζ(s) =
∞∑

n=−1
an(s− 1)n.

Calculating P2 and P3 now is pure calculation.

Calculating P2. We find

ζ2(s) =

 ∞∑
n=−1

ans
n

2

= a2
−1(s− 1)−2 + 2a−1a0(s− 1)−1 +O(1).

We multiply this with the Taylor series above and find that the coefficient of (s− 1)−1 is given
by

2a−1a0x+ a2
−1(x log x− x) = x(a2

−1 log x+ 2a−1a0 − a2
−1).

Remark. It is possible to show by elementary means that
∞∑

n≤x

d2(n) = x log x+ (2γ − 1)x+O(x1/2),

which shows that a0 = γ. (I just realized that a−1 = 1 is already known haha, but we could
probably also derive this with a similar approach and k = 1). This shows

P2(X) = X + 2a0 − 1.

1



Calculating P3. We find similarly to above

ζ3(s) = (s− 1)−3 + 3a0(s− 1)−2 + 3(a2
0 + a1)(s− 1)−1 +O(1).

and again use this to figure out the coeffitient of (s−1)−1 in the Laurent expansion of F3 around
s = 1. We find that this coefficient is given by

3(a2
0 + a1)x+ 3a0x(log x− 1) + x((log x)2 − log x+ 1)

= x(1
2(log x)2 + (log x)(3γ − 1) + 3(γ2 + a1 − γ) + 1),

i.e.
P3(X) = 1

2x
2 + (3γ − 1)x+ 3(a1 + a2

0 − a0) + 1.

Problem 2

a) To calculate ζ ′(0), we make use of the functional equation, in the form

ζ(1 − s) = ζ(s) · 2Γ(s)
(2π)s

sin((π(1 − s)/2).

(This can be derived from the usual functional equation using the reflection formula Γ(z)Γ(1 −
z) = π

sin(πz) . For s close to 1 we find

(s− 1)ζ(s)Γ(s) = 1 +O((s− 1)2),

and
sin(π(1 − s)/2) = −π

2 (s− 1) +O((s− 1)3).

Hence
ζ(1 − s) = − π

(2π)s
+O((s− 1)2) = −1

2 − 1
2 log(2π)(s− 1) +O((s− 1)2).

This gives ζ ′(0) = − log 2π
2 . We now insert this into (5.2). For L(s) = ζ(s), this reads as

−ζ ′(s)
ζ(s) = − log π

2 + 1
2

Γ′(s/2)
Γ(s/2) − b+ 1

s
+ 1
s− 1 −

∑
ρ̸=0,1

( 1
s− ρ

+ 1
ρ

)
.

Taking the logarithmic derivative of the recurrece relation Γ(s+ 1) = sΓ(s) reveals

Γ′(s+ 1)
Γ(s+ 1) = 1

s
+ Γ′(s)

Γ(s) .

We can use this to simplify our equation, leaving us with

−ζ ′(s)
ζ(s) = − log π

2 + 1
2

Γ′(s/2 + 1)
Γ(s/2 + 1) − b+ 1

s− 1 −
∑

ρ ̸=0,1

( 1
s− ρ

+ 1
ρ

)
.

When inserting s = 0, this sum vanishes, and we find

−ζ ′(0)
ζ(0) = − log π

2 + 1
2

Γ′(1)
Γ(1) − b− 1.

This proves the claim, as we know ζ(0) = −1
2 , Γ(1) = 1 and the values for ζ ′ and Γ′ from above.
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Remark. The formula Γ′(1) = −γ can be derived from the Weierstraß product

1
Γ(z) = zeγz

∞∏
j=1

(
1 + z

j

)
e−z/j

by taking logarithmic derivatives on both sides and inserting z = 1.

b) This statement is false, but of course, we are supposed to show |Im(ρ)| ≥ 6 for all the
non-trivial roots of the zeta function. By (5.3a), we have that

−b = − Re b =
∑

ρ

Re(1
ρ).

The idea is that if Im ρ1 was small, then this sum would be so large that this equality cannot
hold (remember that b = −0.023 is quite small). Let ρ = σ+ it be a root with smallest possible
imaginary value. Note that with ρ, we also have roots 1 − σ ± it and σ − it, so we may assume
that σ ≥ 1

2 and that t > 0. As all contributions in the sum of (5.3a) are positive, we find

−b ≥ 1
σ + it + 1

σ − it = 2σ
σ2 + t2

≥ 1
1 + q2 .

This shows t ≥
√

−b−1 − 1 ≈ 6.5036.

Problem 3

a-5p) The "only" thing left to made precise is the contour shift. The main ingrediants are (5.3b)
and (5.3c).

Just for convenience, let’s summarize the bounds we need for ζ′

ζ :

ζ ′

ζ
(s) =


O(1) Re s ≥ 2,
O(log |s|) Re s ≤ −1

2 , |s+ 2m| ≥ 1
4 for all m ∈ N,∑

|ρ−s|≤1
1

s−ρ +O(1 + log |s|), −1 ≤ Re s ≤ 3.

The first bound follows from ζ′

ζ (s) =
∑

n Λ(n)n−s, the second part follows from the first bound,
the functional equation and Stirling’s formula. The third part is (5.3c).

By (5.3b), there are approximately log T roots of the zeta-function with imaginary part close
to T (i.e., |T − Im ρ| ≤ 1). Hence given some n ∈ Z, the pigeonhole principle assures that it
is possible to find some T = Tn with |n− T | ≤ 1 and minρ |T − Im ρ| ≤ 1

log|n| . Together with
(5.3c), this gives that ζ′

ζ (σ + iT ) ≪ (log |T |)2 on that line.

The plan is now to choose some large n, and shifting the truncated integral

− 1
2πi

∫ 2+in

2−in

ζ ′

ζ
(s)ω̂(s) ds (1)

to Re s = −1/2. This leaves us with the exercise to bound the horizontal integrals along the
segments [2 ± in,−1/2 ± in]. By the rapid decay of ω̂ and the bounds for ζ ′/ζ, changing the
boundaries of the integral in (1) from [2 − in, 2 + in] to [2 − iTn, 2 + iTn] comes only with a small

3



cost of o(1). So we may also assume that uniformly ζ(σ + iTn) ≪ (logn)2 along the horizontal
segments. This justifies the first contour shift, and we obtain

∑
n

Λ(n)ω(n) = 1
2πi

∫ 2+in

2−in

ζ ′(s)
ζ(s) ω̂(s) ds+ o(1)

=
∑

|Im ρ|≤Tn

ω̂(ρ) + 1
2πi

∫ −1/2+iTn

−1/2−iTn

ζ ′(s)
ζ(s) ω̂(s) ds+ o(1).

We may let n → ∞, obtaining

∑
n

Λ(n)ω(n) −
∑

ρ

ω̂(ρ) =
∫

(−1/2)

ζ ′(s)
ζ(s) ω̂(s) ds.

In the proof of (4.4c) we can abuse the fact that Supp(ω) ⊂ [2,∞) to show that ω̂(s) ≪ 2−s

|Im(s)|N

for all N . This shows the bound∫
(−A+1/2)

ζ ′(s)
ζ(s) ω̂(s) ds ≪ 2−A,

justifying the shift Re s → −∞.

b-5p) The observation is that this function has large negative peaks at the primes , and when
n = pk is a prime power (to be fair, withouth knowing the explicit formula, this would be
hard to guess). Although the solution will (implicitely) assume the Riemann conjecture, this
illustrates the fact that ζ knows everything about the primes.

Okay, let’s analyze what’s happening here. First, we have

cos(γj log x) = Re(eiγj log x) = Re(xiγj ),

so we are plotting the real part of the sum of xiγ over the first few zeroes. If we want to interpret
this as a sum

∑
ρ ω̂(ρ), we would like to choose ω in way such that ω̂(1/2 + iγ) ≈ xiγ for the

zeroes we want to consider, and ω̂ decaying rapidly after that range (ignoring the contribution
of the trivial zeroes).

Apparently (not clear to me how to come up with this but hey it works) a convenient seems to
be

ω̂(1/2 + iγ) = xiγ exp(−(γ/S)2) = xs− 1
2 exp

((
s− 1/2
S

)2)
,

as this vanishes quickly once γ > S. We choose S to be a parameter roughly of the size of the
largest zero we want to consider, which in our case is γ30 ≈ 100. That’s why we choose S = 100.
We will later show that the weight

ω(y) = ωS,x(y) = S

2(πy)1/2 exp
(

−
(
S

2 log
(
y

x

))2
)

is the inverse Mellin-transform of ω̂. Now this is large if the part in the exponential vanishes,
i.e., if x ≈ y. On the other side, if y is not close to x then log(y/x) becomes large (say of size
≈ 10

S ), then the factor exp(−S2/4 log(y/x)2) makes ω decay quickly. So at least for x not too
large (for large x we need a further distance between y and x to make log(y/x) become large),
ω essentially looks like a peak at y = x. We are now ready to explain what’s going on. With

4



the explicit formula (which we are technically not even allowed to use as ω is not compactly
supported, but whatever), we find

∑
n

Λ(n)ωS,x(n) ≈ −
∑

|Im ρ|≤S

ω̂(ρ) ≈
S∑

j=1
cos(γj log x).

If now x ≈ pk is close to a prime power, the LHS is ≈ Λ(n) S
y1/2 , large. If not, there is no term

on the LHS that contributes much, so we would expect the RHS to be small.

Prove that "ω̂ = ω̂". We put ω̂ in the inverse mellin transform to find

ω(y) = 1
2πi

∫
(c)
xs−1/2 exp

((
s− 1/2
S

)2)
y−s ds

for all real numbers c. We substitute u = s−1/2
S and find

ω(y) = S

y1/2 · 1
2πi

∫
(c)

exp(u2)
(
y

x

)−Su

du.

Abbreviating v = S log y
x shows further that

S

y1/2
1

2πi

∫
(c)

exp(u2) exp(−uv) du = S exp(−v2/4)
y1/2 · 1

2πi

∫
(c)

exp((u− v/2)2) du.

This integral does not depend on c, hence we may wlog assume c = v/2, which reveals that this
integral equals

1
2πi

∫
(0)

exp(u2) du = 1
2π

∫ ∞

−∞
exp(−t2) dt = 1

2
√
π
,

just what we wanted.

Problem 4

First, an aside on the weird-looking error term ψ(x) − x ≪ xe−c
√

log x. On the one side it is
better than every error term of the form x/(log x)A (for A ∈ R>0 large), on the other side it is
worse than every error term of the form x1−δ would be (for δ ∈ R>0 small).

Our version of the prime number theorem reads

ψ(x) =
∑

pn≤x

log p = x+O(xe−c
√

log x)

for some constant c > 0. We deduce a formula for π in two steps. First we show that ψ(x) does
not differ too much from the weighted prime-counting function

ψ0(x) :=
∑
p≤x

log p.

Then we use ψ0 for partial summation, utilizing that

π(x) =
∑
p≤x

log p
log p = ψ0(x)

log x +
∫ x

2

ψ0(t)
t(log t)2 dt. (2)

Evaluating this should be possible using the approximation for ψ0(x).

5



Let’s carry this through, beginning with the estimate for |ψ(x) − ψ0(x)|. We find

ψ(x) − ψ0(x) =
∑

pk≤x, k≥2
log p ≤

 ∑
p≤

√
x

+
∑

p≤x1/3

+ · · · +

 log x

Note that there are at most log2 x summation signs which don’t run over an empty set, and
every index set contains (trivially) less than

√
x primes. We obtain

ψ(x) − ψ0(x) ≤ (log2 x)
√
x(log x) ≪ x1/2+ε.

Now ψ0 satisfies the same approximation as ψ, as

ψ0(x) = ψ(x) +O(x1/2+ε) = x+O(xe−c
√

log x).

Inserting this in (1) yields

π(x) = x

log x +
∫ x

2

1
(log t)2 dt+O(xe−c

√
log x),

where we used that
∫ x

2
1

t(log t)2 dt ≪ 1. As

∫ x

2

1
(log t)2 dt =

[
Li(t) − t

log t

]x

2
= Li(x) − x

log x +O(1),

the claim follows.

Max von Consbruch, email: s6mavonc@uni-bonn.de. Date: December 13, 2022
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Prof. Dr. Valentin Blomer winter term 2022/23

Analytic Number Theory

Problem Set 9

Problem 1.-2. Show that

ÿ

nďx
Ωpnq“2

1 „
x log log x

log x

(in other words, the quotient of the two sides tends to 1 as x tends to infinity).
Hint: Careful partial summation and the prime number theorem. Little exercise in calculus:

what is d
dp

şx{p
p

dt
log t?

Remarks: Heuristically, the result is easy to guess. One has

ÿ

pqďx

1 “
ÿ

pďx

ÿ

qďx{p

1 «
ÿ

pďx

x{p

log x{p
«

ÿ

pďx

x{p

log x
«
x log log x

log x
.

The “real” proof is more technical, of course (start by distinguishing p ď q and p ě q). We
will show later that

ÿ

nďx
Ωpnq“k

1 „
xplog log xqk´1

pk ´ 1q! log x

for k P N. This makes perfect sense, since (formally!) summing over k gives

x “
ÿ

nďx

1 “
ÿ

k

ÿ

nďx
Ωpnq“k

1 «
ÿ

k

xplog log xqk´1

pk ´ 1q! log x
“

x

log x
expplog log xq “ x.

Problem 3. Show φpnq " n{ log log n for n ě 3.

Problem 4. Let c ą 0. Let q1 ă q2 ă . . . be the sequence of “exceptional” mod-
uli for which there exists a primitive character χ mod q such that Lps, χq has a real zero
β ą 1´c{ log q (Siegel zero). Show that for c sufficiently small, one has qj`1 ą q2

j . Conclude
that there are at most Oplog logXq exceptional moduli up to X.
Hint: This follows quickly from (5.10).

Due: Tue, Dec 13



Solutions to Sheet 9.

Problem 1&2

Want to estimate
S2(x) :=

∑
n≤x,Ω(n)=2

1.

Write it as
S2(x) =

∑
p≤

√
x

∑
p≤q≤x/p

1 =
∑

p≤
√

x

(π(x/p) − π(p)) + O(
√

x).

Use PNT, get

S2(x) =
∑

p≤
√

x

∫ x/p

p

dt

log t
+ O(xe−c

√
log x).

for a constant c > 0 (not the same as in the PNT). Concept-wise we are done here, as all is
left to do is to do partial summation with g(t) = Li(x/t) − Li(t) as smooth weight, and an the
indicator function on primes. Estimating the rest is a bit tedious, but straight-forward:

We have g(
√

x) = 0 and −g′(t) = 1
log t + x

t2 log(x/t) . We obtain

S2(x) =
∑

p≤
√

x

g(p) =
∫ √

x

2

π(t)
log t

+ π(t)x
t2 log(x/t) dt.

The integral over π(t)/ log t can be dealt with quite quickly. We have π(t) ≪ t
log t , hence

∫ √
x

2

π(t)
log t

dt ≪
∫ √

x

2

t

(log t)2 dt ≪ x

(log x)2 .

We are left with

S2(x) =
∫ √

x

2

π(t)x dt

t2 log(x/t) + O

(
x

(log x)2

)
=
∫ √

x

2

x((log t)−1 + O((log t)−2))
t log(x/t) dt + O

(
x

(log x)2

)
,

where we applied the PNT again, this time with error term O(x/(log x)2). The integral over the
O-term is also easily handled. We have log(x/t) ≫ log x, and hence find that the contribution
is bounded by

x

log x

∫ √
x

2

1
t(log t)2 dt ≪ x

log x
.

We are left with
S2(x) = x

∫ √
x

2

1
t(log t)(log x

t ) dt + O( x

log x
).

We can use the geometric series to show that

1
log x

t

= 1
log x(1 − log t

log x)
= 1

log x

(
1 + O( log t

log x)
)

= 1
log x

+ O

( log t

(log x)2

)
.

Hence we obtain

S2(x) = x

log x

∫ √
x

2

1
t log t

dt+O

(
x

(log x)2

∫ √
x

2

1
t

)
+O( x

log x) = x

log x

∫ √
x

2

1
t log t

dt+O

(
x

log x

)
.

1



This integral is exactly given by∫ √
x

2

1
t log t

dt = log log
√

x − log log 2,

which leaves us with
S2(x) = x log log x

log x
+ O

(
x

log x

)
,

as desired.

Problem 3

This is a consequence of Merten’s theorem, which states that for x > 1,∑
p≤x

1
p

= log log x + C + O((log x)−1)

for some constant C.

Note that
φ(n)

n
=
∏
p|n

(1 − p−1),

so we really want to show that the RHS is ≫ (log log n)−1. The product over the prime divisors
of n is hard to get a hold on. It would be much easier if we could somehow relate this to
products of the form

∏
p≤x(1 − p−1), as these products can be bounded with Merten’s formula:

∏
p≤x

(
1 − 1

p

)
= exp

∑
p≤x

log
(

1 − 1
p

) = exp

−
∑
p≤x

1
p

−
∑
p≤x

∑
k≥2

1
kpk


= exp

− log log x − C + O((log x)−1) −
∑

p

∑
k≥2

1
kpk

+ O

∑
p>x

∑
k≥2

1
pk


= e−C′

log x
exp

(
O

( 1
log x

))
= e−C′

log x
(1 + O((log x)−1) ≫ 1

log x
.

(This also was on sheet 0). In particular, if we choose x = log n, we obtain∏
p≤log n

(
1 − 1

p

)
≫ (log log n)−1.

This is nice, because the prime divisors p | n with p ≥ log n don’t contribute anything:

∏
p|n, p≤log n

(
1 − 1

p

)
≥
(

1 − 1
log n

)ω(n)
≥
(

1 − 1
log n

)2 log n

≫ 1.

(Here we used ω(n) ≤ log2(n) ≤ 2 log n and that one formula for e). Hence we can conclude

φ(n)
n

≥
(

1 − 1
log n

)ω(n) ∏
p≤log n

(
1 − 1

p

)
≫ 1

log log n
.

Notes after correcting. I just realized that the long calculation can be replaced by a reference
to (5.9). This also makes the reference to Merten’s theorem dispensable, but technically uses
the (much stronger) prime number theorem.

2



Problem 4

Okay, let c > 0 and let q and q′ be two exceptional moduli with zeroes characters χ, χ′ and
real zeroes β, β′ satisfying the condition of the exercise. Let’s compare the assumptions with
the statement of (5.12).

(A) We have 1 − c
log q < β, and similar for q′.

(5.12) There is some small d > 0 (independent of q and q′) such that we have min(β, β′) ≤
1 − d

log(qq′) .

If we assume q < q′, we certainly obtain

1 − c

log q
< 1 − d

log(qq′) , i.e. d

c
<

log(qq′)
log q

, i.e. q′ > qd/c−1.

Thus, any c < d/3 does the job.

This shows that there are O(log log n) exceptional moduli up to n.

Aside: There is nothing special about the 2 in the exponent, if we choose c small enough we
can get arbtirarily large exponents. But gives stronger conditions on what it means to be
exceptional.

Max von Consbruch, email: s6mavonc@uni-bonn.de. Date: December 21, 2022
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Prof. Dr. Valentin Blomer winter term 2022/23

Analytic Number Theory

Problem Set 10

Problem 1. Let pa, qq “ 1. Find an upper bound for the smallest prime p ” a pmod qq
as a function of q. Show that under the assumption of the Generalized Riemann Hypothesis
for Dirichlet L-functions there exists a prime p ” a (mod q) such that p ! q2`ε.

Problem 2. Let χ be a non-trivial character modulo q.
a) Let M ď N and <s ą 0. Show that

ÿ

MănďN

χpnqn´s !
q|s|M´<s

<s
.

b) Show Lps, χq ! log q for <s ą 1´ 1{ log q, |=s| ď q.
c) Show L1ps, χq ! plog qq2 for <s ą 1 ´ 1{ log q, |=s| ď q. Hint: you can either mimic

the proof of b) or apply Cauchy’s integral formula.

Problem 3. Fix any A ą 0. Let Rpnq denote the number of ways of writing n P N as
a sum of a prime and a square-free number. Show the asymptotic formula

Rpnq “
ź

p-n

ˆ

1´
1

ppp´ 1q

˙
ż n

2

dt

log t
`O

ˆ

n

plog nqA

˙

.

Hint: Start with Rpnq “
ř

păn µpn ´ pq2 and establish the convolution formula µ2pnq “
ř

d2|n µpdq. Use Siegel-Walfisz where applicable and estimate the rest trivially.

Problem 4. Show that for almost all numbers n ď x there exist natural numbers a, b
with 4{n “ 1{a ` 1{b. Here “almost all” means that the set of numbers not having this
property has cardinality opxq.
Hint: Show that each n ” 3 pmod 4q has this property and conclude that all numbers n
having a prime divisor p ” 3 pmod 4q have this property. Now use (5.15).
Remark: The famous unsolved Erdős-Straus conjecture states that for all numbers n there
exist a, b, c such that 4{n “ 1{a` 1{b` 1{c.

Due: Tue, Dec 20

Zoom login for the lecture on Dec 23:



https://uni-bonn.zoom.us/j/64362904429?pwd=S1FoL21rS2VYS2hodkc4NHZpa1Jndz09

Meeting ID: 643 6290 4429
Passcode: 555095



Solutions to Sheet 10.

Reminder: Li(n) :=
∫ n

2
1

log t dt.

Problem 1

This exercise tests your understanding of the Siegel-Walfiz theorem. Let’s write down explicitely
what it says.

Theorem 1 (Explicit Siegel-Walfisz). Let A > 0. There is a constant K = K(A) and a constant
c such that whenever q < (log x)A, we have the approximation (with K and c independent of
q!!!) ∣∣∣∣ x

φ(q) − ψ(x; q, a)
∣∣∣∣ < Kxe−c

√
log x.

It is a routine exercise in partial summation to obtain the corresponding statement for π(x),
which reads (with the same c)

Theorem 2 (Explicit Siegel-Walfisz for π). Let A > 0. There is a constant K = K(A)
and a constant c such that whenever q < (log x)A, we have the approximation (with K and c
independent of q!!!) ∣∣∣∣Li(x)

φ(q) − π(x; q, a)
∣∣∣∣ < Kxe−c

√
log x.

In particular, if q is large enough and we choose x such that q < log(x)A (i.e., so large that we
can apply Siegel-Walfisz), we have Kxe−c

√
log x < Li(x)

φ(q) +1, so that π(x; q, a) > 0. The condition
q < (log x)A is equivalent to eq1/A

< x. As A may be chosen arbitrarily large, this implies that
we have π(x; q, a) > 0 if x ≫ eqε .

This bound might feel unsatisfying, because exp(qε) is huge compared to q! We cannot do much
better because the possibility of Siegel-Zeroes forces us to impose hard restrictions on the size
of q compared to x. However, if the generalized Riemann hypothesis were true, we wouldn’t
have to worry about them. Perron’s formula would the estimate

ψ(x, χ) ≪ (log q)x
1
2 +ε

and hence
ψ(x; q, a) = 1

φ(q)
∑

χ

∑
n

χ(n)Λ(n)n−s = x

φ(q) +O((log q)x1/2+ε). (1)

(I am not completely sure with the error term, but you might be able to work this out yourself.
You will need the approximations

L′

L
(s, χ) =


O(1) Re s ≥ 2
O(log q |s|) Re s ≤ −1

2 and |s+m| > 1
4∀m ∈ N∑

|t−Im ρ|≤1
1

s−ρ +O(log(q(2 + |t|))) −1
2 ≤ Re s ≤ 2,

where the latter sums goes over the non-trivial zeroes of L(s, χ).) Anyways, we observe that
the main term of (1) dominates the error if q2+ε < x. This is the desired bound.

1



Problem 2

(a) Let’s try partial summation in conjunction with Polya-Vinogradov.

∑
M<n≤N

χ(n)n−s = N−s
∑

n≤N

χ(n) −M−s
∑

n≤M

χ(n) + s

∫ N

M
t−s−1 ∑

M<n≤t

χ(n) dt

Now Polya-Vinogradov gives that every sum can be bound by O(q1/2 log q). We obtain

∑
M<n≤N

χ(n)n−s ≪ M− Re sq
1
2 log q + |s|

∫ N

M
t− Re s−1q

1
2 log q dt ≪ |s| qM− Re s

Re s .

Here we completed the integral and bounded q
1
2 log q ≪ q. (This is not optimal, but it

doesn’t matter).

(b) Note that in part a, we can choose N arbitrarily large (without changing the implicit
constant in ≪!). Hence it makes sense to choose some M > 2 and split the sum L(s, χ) =∑

n∈N χ(n)n−s into the parts n ≤ M and n > M and apply the result of part a for
the latter sum. How large do we have to choose M in order to make this work? As
Re s > 1 − (log q)−1 and |Im s| < q we find |s| ≪ qRe s. With part a, this gives∑

M<n

χ(n)n−s ≪ q2M (log q)−1−1.

If we choose M = q2, this reduces to ≪ 1, so let’s see if the sum with terms n < M is
small enough. We trivially bound∑

n<M

χ(n)n−s ≪
∑

n<M

n(log q)−1n−1 ≪
∫ M

1
t(log q)−1−1 dt =

[
(log q)t(log q)−1]M

1
.

As M = q2 and (q2)(log q)−1 = e2(log q)(log q)−1 = e2 ≪ 1, we are done.

(c) We will prove this with Cauchy’s integral formula. Remember what it says:

L′(s, χ) = 1
2πi

∫
C

L(z, χ)
(z − s)2 dz,

where C is some path convoluting s. We choose C to be the circle {z | |z − s| = (log q)−1}.
This might cause us to leave the domain Re s > 1 − (log q)−1, however the bound of part
b stays valid even if Re s > 1 − 2(log q)−1. We get

L′(s, χ) ≪
∫

|z−s|=(log q)−1

L(z, χ)
(z − s)2 dz ≪ (log q)2.

Here we used L(z, χ) ≪ log q and (s − z)−2 ≪ (log q)2, so the part in the integral is
bounded by O((log q)3). As we integrate over a path with length O((log q)−1), we obtain
a bound with O((log q)2), and we win.

Problem 3

Before solving this, we should maybe try to figure out why we would expect this result. Given
some number n, we are supposed to evaluate the counting function

R(n) = #{p ≤ n | n− p is square free}.

2



Naively, one might be think that

R(n) ≈ ζ(2)−1π(n) =
∏
p

(1 − p−2)π(n),

as the propability of a random number to be square-free is (in a suitable sense) given by ζ(2)−1,
and we inspect numbers (which seem random) in a set of cardinality π(n). This heuristic is not
too far off, but it is wrong! The main term of the asymptotic is clearly different.
To see what goes wrong, let q be any prime number. First assume that q ∤ n. What is the
probability that q2 divides n−p for some prime p ̸= q? Neither n nor p are divisible by q, so the
residue classes of these numbers mod q2 are invertible, and there are φ(q2) such residue classes.
So the probability is given by φ(q2)−1. Now assume q | n. One quickly checks that q2 cannot
divide n − p (unless p = q, but this case does not contribute much). Now we can explain the
asymptotic: There are ≈ Li(n) primes ≤ n, and the probability for n− p not being divisible by
some prime q is given by (1 − φ(q2)−1) if q ∤ n and by 1 if q | n. As n − p is square-free iff no
square of a prime divides it, we should expect

R(n) ≈
∏
q∤n

(1 − φ(q2)−1)Li(n) =
∏
q∤n

(
1 − 1

q(q − 1)

)−1
Li(n),

and this is what we have to prove.

Proof. Clearly, we have R(n) =
∑

p≤n µ
2(n− p). A standard trick to deal with µ2 is writing it

as µ(k) =
∑

d2|k µ(d). Applying this gives

R(n) =
∑
p≤n

µ2(n− p) =
∑
p≤n

∑
d2|n−p

µ(d) =
∑

d≤
√

n

µ(d)
∑

p≤n, p≡n mod d2

1.

This is now basically an issue of counting primes in an arithmetic progression! Hence it really
smells like Siegel-Walfisz, but this is not applicable right away. One issue is that we can only
apply Siegel-Walfisz if (d, n) = 1. But restricting to those d does not really affect our main
term, as whenever (d, n) > 1 there is at most one prime number in that arithmetic progression,
and the contribution of those is bounded by ω(n) ≪ nε. Furthermore, and more seriously,
Siegel-Walfisz is only applicable if d is small compared to n, more precisely, only if d < (logn)A.
But again, we can elementarily bound the terms with d > (logn)A. Given some d, the amount
of numbers < n congruent to n mod d2 can be bounded by ≪ n

d2 . We obtain

R(n) =
∑

d≤(log n)A, (d,n)=1
ψ(n;n, d2) +O

 ∑
(log n)A<d<

√
n

n

d2

 +O(
√
n),

and the O-terms can be bound by ≪ n
(log n)A . Also, we can now apply Siegel-Walfisz! We find

R(n) =
∑

d≤(log n)A, (d,n)=1

1
φ(d2)Li(n) +O

(
n

(logn)A

)
.

The sum can be completed, as φ(d2) ≫ d2

log log d ≫ d2−ε, so that

∑
d>(log n)A

1
φ(d2) ≪ 1

(logn)A(1−ε) .

This allows us to conclude (for any A, not the choice we made before)

R(n) =
∑

d∈N, (d,n)=1

1
φ(d2)Li(n) +OA

(
n

(logn)A

)
=

∏
p∤n

(
1 − 1

φ(p2)

)
Li(n) +OA

(
n

(logn)A

)
.

3



Problem 4

We follow the hint. Let n ≡ 3 mod 4, write it as n = 4k + 3. Now

4
n

− 1
k + 1 = 4

n
− 4
n+ 1 = 4

n(n+ 1) = 4
(4k + 3)(4k + 4) = 1

(4k + 3)(k + 1) .

This shows that there is a solution for every n ≡ 3 mod 4. One also quickly verifies that if
4
n = 1

a + 1
b , then 4

mn = 1
ma + 1

mb . Also, there is a solution whenever n is even. Hence we really
only have to show that almost all numbers have a prime divisor ≡ 3 mod 4.

Now we can use (5.15). The numbers having only prime factors congruent 1 mod 4 is a subset
of the numbers that can be written as a sum of two squares, and by (5.15), the number of sums
of two squares up to x is bound by O( x√

log x
) = o(x).

Max von Consbruch, email: s6mavonc@uni-bonn.de. Date: January 10, 2023
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Prof. Dr. Valentin Blomer winter term 2022/23

Analytic Number Theory

Problem Set 11

Problem 1. Let

gpqq :“ µ2pqq
ź

2ăp|q

2

p´ 2
.

Show (by elementary means or by Perron’s formula or otherwise) that

ÿ

qďQ

gpqq " plogQq2.

We want to develop another approach to Theorem 6.3. Recall the setup: let

Spαq “
ÿ

MănďM`N

anepαnq

be a trigonometric polynomial. Let α1, . . . , αR P R be pairwise distinct in R{Z, and let
δ :“ mini ­“j }αi ´ αj} ą 0. Our goal is to show that

ÿ

rďR

|Spαrq|
2 ! pN ` δ´1q

ÿ

n

|an|
2. (1)

Problem 2. a) Let cnr be an pN ˆ Rq - matrix with complex entries, and let D ą 0.
Show that the following two statements are equivalent:

(A)
ÿ

rďR

ˇ

ˇ

ˇ

ÿ

nďN

cnrxn

ˇ

ˇ

ˇ

2
ď D

ÿ

nďN

|xn|
2 for all sequences xn;

(B)
ÿ

nďN

ˇ

ˇ

ˇ

ÿ

rďR

cnryr

ˇ

ˇ

ˇ

2
ď D

ÿ

rďR

|yr|
2 for all sequences yr.

b) Show that (1) follows from

ÿ

n

fpn{Nq
ˇ

ˇ

ˇ

ÿ

rďR

brepnαrq

ˇ

ˇ

ˇ

2
! pN ` δ´1q

ÿ

r

|br|
2 (2)

where f is a fixed non-negative smooth function with fpxq “ 1 on r´1, 1s and fpxq “ 0 for
|x| ě 2.

Hint for a: You can apply Cauchy-Schwarz for a direct proof, or you view (A) and (B)
as bounds for an operator and its adjoint [one line].



Problem 3. Prove (2) by the Poisson summation formula.

Problem 4. Extend (6.4) to arithmetic progressions: for any sequence an and any two
positive integers l, k show that

ÿ

qďQ
pk,qq“1

ÿ˚

a pmod qq

ˇ

ˇ

ˇ

ÿ

MănďM`N
n”l pmod kq

ane

ˆ

an

q

˙

ˇ

ˇ

ˇ

2
! pQ2 `Nk´1q

ÿ

n”l pmod kq

|an|
2.

Due: Tue, Jan 10

Zoom login for the lecture on Dec 23:

https://uni-bonn.zoom.us/j/64362904429?pwd=S1FoL21rS2VYS2hodkc4NHZpa1Jndz09

Meeting ID: 643 6290 4429
Passcode: 555095



Solutions to Sheet 11.

Problem 1

Let’s first think about why this should be true. For 2 ̸= p we have g(p) = 2
p−2 ≥ 2

p = τ(p)
p . Hence

for square-free numbers n we have g(n) ≥ τ(n)
n . It is easy to see that

∑
n≤Q

τ(n)
n ≫ (log Q)2

(approximate the LHS with
(∑

n≤Q
τ(n)

n

)2
). Hence we expect a similar lower bound (with a

different constant) here. However, to make this precise we would have to show that the divisor
function does not interact with the square-freeness condition too badly.

Proof using Perron’s Formula. Let G(s) =
∑∞

n=1
g(n)
ns be the Dirichlet series attached to g.

As g behaves similar to τ(n)
n , we would hope to be able to relate g to ζ(s + 1)2, which is the

Dirichlet series attached to the coefficients τ(n)
n . We write G(s) = ζ(s + 1)2H(s), where we find

in Re s > 0

H(s) =
(

1 + 1
2s

)(
1 − 1

2s+1

)2 ∏
p>2

(
1 + 2

(p − 2)ps

)(
1 − 1

ps+1

)2
.

Factoring this out, we find that the euler factor at p is of size 1 + O(p−(s+2)), hence the
euler product is absolutely (and locally uniformly) convergent whenever Re s > −1, so H is
a holomorphic function in that region and thereby does not interfere with the analysis when
doing perron’s formula. Also note that now G can be continued to Re s > −1.

Now, we do what we always do. Let T = xα (for some α ∈ (0, 1)) and c = 1
log x . We find by

Perron’s Formula

∑
n≤x

g(n) = 1
2πi

∫ c+iT

c−iT
G(s)xs ds

s
+ O

xc

T

∑
n∈N

g(n)
nc

+ max
n∼x

g(n)
(

x log x

T

) .

We first inspect the O-term. As the series defining G(s) = ζ(s + 1)2H(s) converges absolutely
in Re s > 0, we find that g(n) ≪ n−1+ε. As the pole of G at 0 has order 2, we have

∑
n∈N

g(n)
nc ≪

(log x)2. In particular, we find that the O-term is bounded by O
(

xε

T

)
.

We now want to shift the contour to the left, to Re s = −1
8 , say. We pick up a residue at s = 0.

To compute the residue we develope everything into taylor series and find the residue to be of
size 1

2H(0)(log x)2 + O(log x). We obtain

∑
n≤x

g(n) = 1
2H(0)(log x)2 + Ver(x, T ) + Hor(x, T ) + O(log x) + O

(
xε

T

)
,

where Ver(x, T ) denotes the integral along the vertical paths

Ver(x, T ) = 1
2πi

(∫ −1/8−iT

c−iT
+
∫ c+iT

−1/8+iT

)
G(s)xs ds

s

and Hor(x, T ) denotes the integral along the horizontal path

Hor(x, T ) = 1
2πi

∫ −1/8+iT

−1/8−iT
G(s)xs ds

s
.

1



As H(s) is absolutely bounded in Re s ≥ −1/2, so we can replace G(s) by ζ(s + 1)2 in all
upcoming considerations. On the vertical lines, we have xs ≪ x−1/8 and ζ(s + 1)2 ≪ T 1/4 (by
the convexity bound), so that we find

Ver(x, T ) ≪ TT 1/4x−1/8 = T 5/4x−1/8.

(We could have also made use of the moment bounds, and improved this bound a lot by cutting
the integral in dyadic pieces, but no need for that). For the horizontal integrals we use the
convexity bound to find that

1
s

≪ 1
T

and ζ(s + 1)2 ≪ T 1/2 and xs ≪ 1,

revealing Hor(x, T ) = O(1). If we choose T = x
1

10 , we also find Ver(x, T ) ≪ 1. Finally, note
that H(0) > 0 (essentially by absolute convergence and the fact that no factor equals 0), so
that ∑

n≤x

g(n) = 1
2H(0)(log x)2 + O(log x) ≫ (log x)2.

Elementary proof. Might be added later. See pages 179-181 in Brüdern’s book.

Problem 2

a) If we consider C as a linear operator CN → CR and equip these spaces with the L2-norm,
the statement of the exercise is equivalent to the statement that the operator norm C
and it’s dual C∗ coincide. This is a classical statement of functional analysis, and true in
general for Hilbert spaces.
But just for the sake of completeness, here is a proof. It suffices to show that (A) implies
(B), by symmetry. Assuming (A), we have

LHS =
∑

n

∣∣∣∣∣∑
r

cnryr

∣∣∣∣∣
2

=
∑
n,r,s

cnrcnsyrys =
∑

r

yr

∑
n

cnr

∑
s

cnsys.

Now we apply Cauchy-Schwartz to the sum over r, finding that

LHS2 ≤
∑

r

|yr|2
∑

r

∣∣∣∣∣∑
n

cnr

∑
s

cnsys

∣∣∣∣∣
2

≤
∑

r

|yr|2 D ·
∑

n

∣∣∣∣∣∑
s

cnsys

∣∣∣∣∣
2

= D ·
∑

r

|yr|2 · LHS.

b) We have to show that ∑
r

|S(αr)|2 ≪ (N + δ−1)
∑

n

|an|2

where S(α) =
∑

M<n<M+N ane(αn) and the values αr with pairwise distance at least δ.
As in the proof from the lecture, we may shift by K without changing the absolute value
of S(α), and may therefore assume M ≪ N (M might be negative). Of course we now
want to apply part a), which leaves us with the task of showing that

∑
|n|≤N

∣∣∣∣∣∑
r

bre(nαr)
∣∣∣∣∣
2

≪ (N + δ−1)
∑

r

|br|2 .

Because opening the absolute values and estimating the inner sums turns out to be hard,
we consider a smoothed version:∑

n

f(n/N)
∣∣∣∣∣∑

r

bre(nαr)
∣∣∣∣∣
2

≪ (N + δ−1)
∑

r

|br|2 ,

where f is a non-negative function with f |[0,1] = 1 and f(x) = 0 for |x| > 2. This clearly
implies the bound above.

2



Problem 3

We open the square and interchange sums, obtaining

∑
n

f(n/N)
∣∣∣∣∣∑

r

bre(nαr)
∣∣∣∣∣
2

=
∑
r,s

brbs

∑
n

f(n/N)e(n(αr − αs)).

We use the elementary inequality |ab| ≤ a2 + b2 to obtain

· · · ≪
∑

r

∑
s

(|br|2 + |bs|2)
∣∣∣∣∣∑

n

f(n/N)e(n(αr − αs))
∣∣∣∣∣

= 1
2
∑

r

|br|2
∑

s

∣∣∣∣∣∑
n

f(n/N)e(n(αr − αs))
∣∣∣∣∣ ,

where in the latter inequality we used many symmetrys in this sum. We now try evaluating
this. First, we consider the diagonal terms with r = s. Here we have αr = αs, and we easily
find that this part of the sum is bounded by ≪ N

∑
r |br|2. For the remaining part, it suffices

to show that ∑
s ̸=r

∣∣∣∣∣∑
n

f(n/N)e(n(αr − αs))
∣∣∣∣∣ ≪ 1

δ
.

The idea is that αr − αs isn’t too small, so we hope that there is cancellation in the sum. This
is where Poisson’s summation formula enters the stage. As f is Schwartz class function, its
fourier transform is too and we find f̂(y) ≪ 1

1+y2 . Hence we obtain

∑
n

f(n/N)e(n(αr − αs)) =
∑

n

f̂(N(αr − αs + n)) ≪ N
∑

n

1
1 + N2(αr − αs + n)2 .

This is easily seen to be of size N
1+∥αr−αs∥2N2 . We are left to show that for fixed r,

∑
s ̸=r

1
1 + ∥αr − αs∥2N2 ≪ 1

Nδ
.

It would not be good enough to just use that ∥αr − αs∥ ≫ 1
δ . The only thing we can do to

avoid this bound is to use that there are at most 2 values for s for which this is smaller than δ,
at most four for which it is smaller than 2δ, etc. Hence we can bound the LHS as

≪
∞∑

n=1

1
1 + n2δ2N2 ,

which leaves us with the task of showing that
∞∑

n=1

1
1 + n2x2 ≪ 1

x

whenever x > 0. This is one line:

LHS ≪
∞∑

n=1
min(1,

1
n2x2 ) ≪

∑
n≤1/x

1 +
∑

n≥1/x

1
n2x2 ≪ 1

x
+ 1

x2

∑
n>1/x

1
n2 ≪ 1

x
.

3



Problem 4

The plan is to reduce this to (6.4). We can shift indices to assume that l = 0. Then we
are summing over multiples of k in an interval of length N . This is the same as summing
over integers in an interval of length N/k. The only thing that might be in our way is the
exponential term, where we have the term e(akd

q ), but we would like to have e(ad
q ). But as we

have (k, q) = 1, summing over a mod q is the same as summing over ka mod q. We arrive at
something which really looks like (6.4), but with an additional coprimality condition. As all
terms in the sum of (6.4) are positive, the inequality still stays valid, and we are done.

Max von Consbruch, email: s6mavonc@uni-bonn.de. Date: January 23, 2023
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Prof. Dr. Valentin Blomer winter term 2022/23

Analytic Number Theory

Problem Set 12

Problem 1. Let gpqq “ µ2pqqτpqq{q. Show that

ÿ

qďQ

gpqq " plogQq2.

Problem 2. Use partial summation to conclude from (6.5) that

ÿ

ξďqďQ

1

φpqq

ÿ

χ pmod qq
χ primitive

ˇ

ˇ

ˇ

ÿ

nďx

wpnqχpnq
ˇ

ˇ

ˇ

2
!

´x

ξ
`Q

¯

ÿ

nďx

|wpnq|2

for any Q ě ξ ě 1, x ě 1 and any numbers wpnq P C.

Problem 3-4. The probability that n ď x is prime is about 1{ log x. Hence we may
conjecture that there are —

?
x{ log x primes p ď x of the form n2 ` 1. It is unknown if

there are infinitely many such primes. Show with the large sieve that there are !
?
x{ log x

such primes. Proceed as follows:
a) Formulate the problem as a sieve problem.
b) Let ρpdq be the number of solutions of ξ2 ` 1 ” 0 pmod dq. Compute ρppq for primes

p ” 1 (mod 4), p ” 3 (mod 4) and p “ 2. Why is ρ multiplicative?
c) Apply (6.9), and show that gpqq ě

ś

p|q 2{p for q that are squarefree and consist
only of primes p ” 1 (mod 4). Conclude that gpqq is majorized by the coefficients of
P psq “

ś

p”1 pmod 4qp1` 2p´s´1q.
d) Show that P psq “ Lps`1, χ´4qζps`1qHps`1q where H is given by an Euler product

that is absolutely convergent and uniformly bounded in <s ě 2{3, say.
e) Use Perron or other means to show that

ř

qďx gpqq " log x (smoothing can simplify
the analysis).

Due: Tue, Jan 17



Solutions to Sheet 12.

Problem 1

Again, we sketch a proof using Perron. We need to find out what the dirichlet function attached
to g looks like. We have

G(s) =
∑
n∈N

g(n)n−s =
∏
p

(
1 + 2

ps+1

)

Remember that the Dirichlet series attached to τ(q)
q is given by

ζ(s + 1)2 =
∏
p

(
1 + 2

ps+1 + 3
p2(s+1) + . . .

)
.

On each euler factor, the first two terms of G(s) and ζ2(s + 1) coincide! So we might hope that
there is a way to compare the two Dirichlet series. Indeed, writing

G(s) = ζ(s + 1)2H(s),

we find that H(s) is given by an euler product with factor at p given by(
1 + 2

ps+1

)(
1 − 1

ps+1

)2
= 1 − 3

p2(s+1) + 2
p3(s+1) = 1 + O(p−2(s+1)).

Now H(s) is absolutely convergent and uniformly bounded in Re s ≥ −1
2 + δ, and we can copy

the proof from exercise 1 on sheet 11.

Problem 2

Partial summation! Write

f(q) = 1
φ(q)

∑∗

χ(q)

∣∣∣∣∣∑
n

ω(n)χ(n)
∣∣∣∣∣
2
(∑

n

|ω(n)|2
)−1

.

Now (6.5) reads ∑
q≤Q

qf(q) ≪ N + Q2.

By partial summation, we then find
∑

R<q≤Q

f(q) ≪
∑

R<q≤Q qf(q)
Q

+
∫ Q

R

∑
R<q≤t qf(q)

t2 dt

≪ N + Q2

Q
+
∫ Q

R

N + t2

t2 dt

≪ N

Q
+ Q + N

∫ ∞

R
t−2dct

≪ N

R
+ Q

and the claim follows.

1



Problem 3&4

a) There are (at least) two ways to set up the sifting problem. Either we sieve for those integers
n ≤ x1/2 such that n2 + 1 is not divisible by prime numbers in some range, or we sieve for those
integers n ≤ x such that n + 1 is a prime and n is a quadratic residue mod p for prime numbers
in some different range. Let us think about the first idea, as this probably is what the exercise
intents us to do. The other approach would probably be a good exercise though! We set

• N = {x1/4 < n ≤
√

x} (this is the set of numbers we want to put into the sieve) (There
is no particular reason to exclude numbers ≤ x1/4, but there is also no reason to sieve for
more, as we will soon see).

• P = {2 ̸= p ≤ x1/4} (this is the set of primes we want to sieve with) (this could have been
chosen larger, but we will see why this is optimal (in some sense) soon).

• Ωp = {Solutions to a2 + 1 ≡ 0 mod p} (for each prime p, this is the set of residue classes
mod p we want to throw out).

With this definition, we find that

N ∗ = {n ∈ (x1/4, x1/2] | ∀2 ̸= p ≤ x1/4 : p ∤ (n2 + 1)} ⊃ {n ∈ (x1/4, x1/2] : n2 + 1 prime}.

Hence, upper bounds for N ∗ deliver upper bounds for the number of primes of the form p = n2+1
in the range

√
x ≤ p ≤ x. As there are ≪

√
x

log x primes up to
√

x, we further have

#{primes of the form p = n2 + 1} ≪ #N ∗ + O

( √
x

log x

)
,

which shows that we need to show #N ∗ ≪
√

x
log x to finish the proof.

b) Note that ρ(p) = #Ωp. We have ρ(2) = 1. Mod p ̸= 2, there are 2 solutions to ξ2 ≡ −1
mod p if

(
−1
p

)
= 1, i.e., if p ≡ 1 mod 4, and 0 otherwise. If m = rs with (r, s) = 1 and we have

ρ(r) solutions ξ2
1 ≡ · · · ≡ ξ2

ρ(r) ≡ −1 mod r and ρ(s) solutions ζ2
1 ≡ · · · ≡ ζ2

ρ(s) ≡ −1 mod s,
then by the chinese remainder theorem (and the fact that a ≡ −1 mod m iff a ≡ −1 mod r and
a ≡ −1 mod s) we find that there are ρ(r)ρ(s) solutions mod rs. This shows ρ(rs) = ρ(r)ρ(s),
as desired.

c) Using (6.9), we can bound the number of elements in N ∗. We put

g(q) := µ(q)2∏
p|q

ω(p)
p − ω(p) ,

where ω(p) = ρ(p) if p ∈ P and 0 otherwise. In particular, g vanishes on even numbers. Now
we have for any Q > 1

#N ∗ ≪ (N + Q2)

∑
q≤Q

g(q)

−1

,

where N = #N ≪
√

x. The task is to find a lower bound for∑
q≤Q

g(q),

2



where (in order not to disturb the main term) we will choose Q ≤ x1/4 (this is also why it
suffices to only consider p ≤ x1/4: these are the only prime divisors that occur as divisors of
numbers ≤ Q). As ρ (and hence ω too) is multiplicative, we find that whenever q only has
prime divisors ≡ 1 mod 4 that are in P,

g(q) =
∏
p|q

2
p − 2 ≥

∏
p|q

2
p

.

As g(q) is supported on numbers that only have prime divisors p ∈ P with ≡ 1 mod 4, we find
that for such numbers we have g(q) ≥ l(q), where l(q) is implicitely defined via

P (s) =
∏

p≡1(mod 4)
(1 + 2p−s−1) =

∑
n∈N

l(n)n−s.

If we assume to know that ∑q≤Q l(q) ≫ log Q, we find for Q ≤ x1/4 that∑
q≤Q

g(q) ≫
∑
q≤Q

l(q) ≫ log Q

and hence

#N ∗ ≪ (
√

x)

 ∑
q≤x1/4

g(q)

−1

≪
√

x

log x
,

which is what we wanted to show. (I don’t think we need this, however).

d) It remains to show that indeed ∑
q≤Q l(q) ≫ log Q. Our tool of choice will be Perron’s

formula again, or some variant thereof with smooth weights (elementary proofs are certainly
possible, but probably less constructive). Let’s choose c, T and write down what (4.7) says:

∑
q≤Q

l(q) = 1
2πi

∫ c+iT

c−iT
P (s)Qs ds

s
+ O

(
Qc

T

∑
n

|l(q)|
nc

+ max
q∼Q

|l(q)|
(

1 + Q log Q

T

))
. (1)

One of the main tasks is now to express P (s) in a way that makes it possible to calculate its
analytic behaviour. The hint tells us that perhaps

P (s) ≈ L(χ−4, s + 1)ζ(s + 1),

which is nice because we know how to deal with ζ(s + 1) and L(χ−4, s + 1). Indeed, the Euler
factor at p ≡ 1 (mod 4) of L(s + 1, χ−4)ζ(s + 1) is given by

(1 + p−(s+1) + p−2(s+1) + · · · )2 = 1 + 2p−s−1 + O(p−2(s+1))

and at p ≡ 3 mod 4 we find

(1 + p−(s+1) + p−2(s+1) + . . . )(1 − p−(s+1) + p−2(s+1)) = 1 + O(p−2(s+1)).

We can use the power series expansion

(1 + x)−1 =
∞∑

n=0

(−x)n

n!

to deduce that the euler factors of H(s + 1) = P (s)(ζ(s + 1)L(χ−4, s + 1)−1 all lie in 1 +
O(p−2(s+1)), which gives that H(s) is holomorphic and absolutely convergent (hence uniformly
bounded) in Re s ≥ 2/3.

3



e) First, we will work through how one can find the bound using (1). Then we will discuss how
one could have used a smooth weight to simplify the analysis.

Okay, so let’s start with (1). As usual, we choose c = 1/ log Q and T = Qα for some α ∈ (0, 1).
We first inspect the O-term. As P (s) is absolutely convergent in Re s > 0, we find that l(q) ≪
qε−1. As L(χ−4, 1) ̸= 0, P (s) has at most a simple pole at 0, hence we find ∑n g(n)n−c ≪ Qε,
and the whole O-term is bounded by O(Qε/T ). By the product expansion and the analytic
continuations of ζ and L, we can continue P to a meromorphic function in Re s > −1/3, and
we know that the only pole is at s = 0 with residue H(1)L(χ−4, 1) ̸= 0. We find that

Ress=0

(
P (s)Qs

s

)
= H(1)L(χ−4, 1)(log Q) + C

for some constant C independent of Q. Now we have to shift the contour, and every contour a
tad to the left of Re s = 0 suffices. Hence we might choose Re s = −1/8. The remaining integral
along the path γ1 ∪ γ2 ∪ γ3 where

γ1 = [c − iT, −1/8 − iT ], γ2 = [−1/8 − iT, −1/8, iT ], γ3 = [−1/8 + iT, c + iT ]

can be easily bounded using the convexity bound, which states that in this region

ζ(s) ≪ (1 + |s|)
1−σ

2 +ε and L(s, χ−4) ≪ (1 + |s|)
1−σ

2 +ε.

In total, after choosing T (more precisely, α) appropiately small, no integal contributes more
than O(1). This shows the asymptotic∑

q≤Q

l(q) = H(1)L(1, χ−4)(log Q) + O(1),

and we in particular find ∑q≤Q l(q) ≫ log Q.

Using a smooth weight. We can make our life a lot easier if we choose some smooth weight
ω with support in [0, 1] and ω|[0,1/2] = 1. With this choice, the derivative of ω is compactly
supported. Note that by integration by parts and in Re s > 0 we have

ω̂(s) =
∫ ∞

0
ω(x)xs−1 dx = −1

s

∫ ∞

0
ω′(x)xs dx = −1

s
M(ω′)(s). (2)

Here, M(ω′) is holomorphic on C and rapidly decaying on vertical lines by (4.4). Therefore,
(2) gives a meromorphic continuation of ω̂ to C with a simple pole at 0, and we find that ω̂ is
also rapidly decaying on vertical lines.

We find ∑
q≤Q

l(q) ≥
∑
q∈N

l(q)ω(q/Q) = 1
2πi

∫
(c)

P (s)Qsω̂(s) ds.

This integral is converging absolutely. Now shifting the integral to the left is easy as ω̂ is eating
through everything (note that ζ and L dont grow too fast by the convexity bound) and the
horizontal integrals vanish in limT →∞. We find

1
2πi

∫
(c)

P (s)Qsω̂(s) ds = 1
2πi

∫
(−1/8)

P (s)Qsω̂(s) ds + Ress=0 (P (s)Qsω̂(s)) .

As before, the residue is of size ≫ log Q, and the remaining integral is absolutely convergent,
thereby of size O(Q−1/8).

Max von Consbruch, email: s6mavonc@uni-bonn.de. Date: January 24, 2023
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Prof. Dr. Valentin Blomer winter term 2022/23

Analytic Number Theory

Problem Set 13

Problem 1. Prove (7.6).

Problem 2. Prove (8.6).

Problem 3.-4. Let χ be a primitive Dirichlet character modulo q ą 2. The proof of
(5.13) showed cancellation between Λ and χ, namely

ÿ

nďx

Λpnqχpnq ! x expp´c
a

log xq (1)

for q ď plog xqA as a consequence of the zerofree region of L1

L ps, χq. One would expect that
this also implies cancellation between µ and χ as a consequence of the same zerofree region
of 1{Lps, χq. The purpose of this exercise is to make this precise without using complex
analysis.

a) Conclude from (1) that

ÿ

nďx

Λpnqχpnq !δ,B qδx{plog xqB

for all δ,B ą 0 and all q ą 2. Conclude that
ÿ

pďx

χppq !δ,B qδx{plog xqB

for all δ,B ą 0 and all q ą 2.
b) Conclude that

ÿ

nďx

χpnqµpnq !δ,B qδx{plog xqB

for all δ,B ą 0 and all q ą 2.
c) Conclude that Dµpx, q, aq is plog xqA-distributed in the sense of (8.3) for every A ą 0.

Hint for (b): Write n “ mp where p is the largest prime factor of n. Justify why

ÿ

nďx

χpnqµpnq “ 1´
ÿ

mďx

µpmqχpmq
ÿ

pmăpďx{m

χppq

where pm denotes the largest prime factor of m. Estimate the inner sum with part a).
To this end, show that the summation conditions imply m ď xωpmq{pωpmq`1q, so that



logpx{mq ě pωpmq ` 1q{ log x.

Due: Tue, Jan 24



Solutions to Sheet 13.

Problem 1

I somehow couldn’t make Selberg’s sieve (7.5) work, so we will just use the large sieve (6.9)
again. We set F (x) = ∏k

j=1(qjx+ rj).

First we need to set up the large sieve. We make the following choices:

• N = {n ≤ x}

• P = {p ≤
√
x}

• Ωp = {a ∈ Z/pZ | F (a) ≡ 0 (mod p)}.

With this setup, we sift for those n ≤ x such that all the numbers qjn + rj have no prime
divisors ≤

√
x, i.e.,

#N ∗ = {n ≤ x : p | qjn+ rj =⇒ p >
√
x}.

As qjn+ rj might be larger than x, this does not guarantee that indeed all remaining numbers
are primes, but we still get an upper bound, so we are good. There are some subteleties with
this setup. First, note that it might happen that ω(p) = #Ωp = p. In this case however we find
that N ∗ = ∅, and any upper bound holds. Our long-term goal is the following. As deg(F ) = k,
we expect ω(p) = k for most primes p, and hence we should have something like

g(m) = µ2(m)
∏
p|m

ω(p)
p− ω(p) ≈ µ2(m)

∏
p|m

k

p
≈ µ2(m)τk(m)

m
.

From here we want to proceed as on the previous sheets (using Perron’s formula) to show that∑
m≤x

g(m) ≫ (log x)k.

And indeed, we can show that most means all but finitely many. First, we throw out all p that
divide one of the qj . Then for all remaining p, there is for every j a unique residue aj such that
p | qjaj + rj . If F had a multiple zero mod p, we’d have that aj = ai for some j ̸= ai, which
immediately implies that

p

∣∣∣∣ det
(
qj qj

ri rj

)
.

But all those determinants are non-vanishing, so that there is only a finite number of such p.
Hence we set P ′ = P \ {finite set of primes}, and we can apply the methods the last two sheets
to find lower bounds for ∑n≤x g(n). Everything goes through, as removing a finite set of primes
only changes the Pirichlet function we consider in the Perron approach by some finite euler
product (which thereby is holomorphic). (Although, if we write G(s) = ζ(s + 1)kH(s) with
H(s) absolutely convergent a bit to the left of Re s = 0, we would still have to somehow show
that H(0) ̸= 0. But I guess this can be done elementarily).
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Problem 2

I am a bit annoyed that this is in the exercises, this is purely elementary. But here we go.

Given a function f which is continuous and monotonic, we have to show that

|Df (x; q, a)| =

∣∣∣∣∣∣
∑

n≤x n≡a(mod )q
f(n) − 1

φ(q)
∑

n≤x, (n,q)=1
f(n)

∣∣∣∣∣∣ ≤ 2(|f(1)| + |f(x)|). (1)

By symmetry, we may assume that f is positive and monotonely increasing. We split up
Df (x; q, a), writing K = ⌊x−a

q ⌋ − 1:

Df (x; q, a) = − 1
φ(q)

∑
n<min(a,x), (n,q)=1

f(n) +
K−1∑
k=0

f(kq + a) − 1
φ(q)

∑
kq+a≤n<(k+1)q+a

f(n)


+ f((K + 1)q + a)δx≥a − 1

φ(q)
∑

⌊ x−a
q

⌋q+a≤n≤x (n,q)=1

f(n).

The first and the last sum have combined size ≥ −(f(1) + f(x)), together with the summand
f((K + 1)q + a)δx≥a we find that everything except the big sum in the middle is of absolute
size ≤ (f(1) + f(x)). This is easily seen by monotonicity of f and the fact that these sums run
over sets of combined cardinality at most φ(q). The sum in the middle telescopes. Indeed, by
monotonicity we have

f(kq + a) ≤ 1
φ(q)

∑
kq+a≤n<(k+1)q+a

f(n) ≤ f((k + 1)q + a),

and these inequalities can be combined into the bound

0 ≥
⌊ x−a

q
⌋∑

k=0

f(kq + a) − 1
φ(q)

∑
kq+a≤n<(k+1)q+a

f(n)

 ≥ − 1
φ(q)

∑
Kq+a≤n<(K+1)q+a

f(n).

The RHS is ≥ −f(x). Combining everything, we showed

|Df (x; q, a)| ≤ f(1) + 2f(x) ≤ 2(f(1) + f(x)).

Problem 3&4

By (5.13), we have for any A > 0 any q < (log x)A and any primitive χ mod q that∑
n≤x

Λ(n)χ(n) ≪A x exp(−c
√

log x). (2)

For any C > 0, this can be relaxed to∑
n≤x

Λ(n)χ(n) ≪A x exp(−c
√

log x) ≪ x/(log x)C . (3)

a) We first show that ∑
n≤x

Λ(n)χ(n) ≪δ,B qδx/(log x)B (4)
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for all δ,B > 0 and q > 2. First, note that this claim is a direct consequence of the prime
number theorem once q > (log x)B/δ. Hence it suffices to check this for q < (log x)B/δ. But in
this region we can apply (3) with A = B/δ and C = B. We obtain the inequalities

∑
n≤x

Λ(n)χ(n) =
{
OB/δ(x/(log x)B) q < (log x)B/δ

O(x) q ≥ (log x)B/δ.

It is easily seen that these inequalities combine into (4).

Now we have to show that ∑
p≤x

χ(p) ≪δ,B qδx/(log x)B. (5)

This is akin to deriving the prime number theorem for π from the prime number theorem for ψ.
Namely, it is another exercise in partial summation. This will just be a sketch of the arguments,
look at sheet 8 for more details. First note that the higher prime powers do not contribute much,
we have ∑

n≤x

Λ(n)χ(n) =
∑

pk≤x

(log p)χ(pk) =
∑
p≤x

(log p)χ(p) +O(x1/2+ε). (6)

Now, partial summation. We find
∑
p≤x

χ(p) = (log x)−1 ∑
p≤x

(log p)χ(p) +
∫ x

1

∑
p≤t(log p)χ(p)
t(log t)2 dt.

Repeated use of (6) and (4) yields the claim: The integral can be bounded by

≪ qδ
∫ x

1

1
(log t)2+B

dt ≤ qδ

(
x1/2 +

∫ x

x1/2

2B

(log x)B
dt
)

≪B qδx(log x)−B,

the remaining term is easily seen to be of that size too.

Remark. This bound is even true for all χ ̸= χ0 mod q. Indeed, suppose non-principal χ mod
q is implied by χ1 mod q1, with χ1 primitive. We can compare the sums over χ and χ1, as∑

n≤x

χ(n)Λ(n) =
∑

n≤x, (n,q)=1
χ(n)Λ(n) +O(ω(q)(log x)2),

and in the latter sum we can replace χ with χ1. We also have∑
n≤x

χ1(n)Λ(n) ≪δ,B qδ
1x(log x)−B ≪ qδx(log x)−B,

and the claim follows after combining the previous two equations with (4).

b) Now we are supposed to show that∑
n≤x

χ(n)µ(n) ≪δ,B qδx/(log x)B. (7)

As the hint commands, we try to make use of the bijection

{square-free numbers n ≤ x} ↔ {(m, p) | mp ≤ x ∧ pm < p ∧m □-free}.

Here (and from now on), pm denotes the largest prime divisor of m. Let’s just insert this and
see what we get.∑

n≤x

µ(n)χ(n) =
∑

n≤x □∤n
µ(n)χ(n) = 1 −

∑
m≤x

χ(m)µ(m)
∑

pm≤p≤x/m

χ(p).
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Applying (5) to the inner sum and using that that µ(m)χ(m) ≪ 1 (and writing ∑pm≤p≤x as∑
p≤x −

∑
p≤pm

) yields

RHS ≪δ,B 1 +
∑

mpm≤x, □∤m
qδ x

m
(log x

m)−B.

Our main task is now to bound (log x
m). As mpm ≤ x and m ≤ p

ω(m)
m (note that m is square-

free), we find that m
ω(m)+1

ω(m) ≤ x, which implies that x
1

ω(m)+1 ≤ x
m . As B > 0, this implies

that
RHS ≪ 1 +

∑
□∤m≤x

qδ x

m
(log x)−B(1 + ω(m))B

We use that (1 + ω(m))B ≤ 2Bω(m)B ≪B ω(m)B. Now we only need to find a bound for the
sum ∑

□∤m≤x

ω(m)B

m
.

I struggeled very hard with bounding this, at some point Bart thold me how it’s done: We show
that ∑

□∤m≤x

ω(m)B

m
≪ (log x)(log log x)B.

For B = 0, this is obvious. We now do induction on B, and basically just reorder the sum.

∑
□∤m≤x

ω(m)B

m
≤
∑
m≤x

ω(m)B−1

m

∑
p|m

1 =
∑
p≤x

1
p

∑
m≤x/p

ω(m)B−1

m

≪
∑
p≤x

1
p

(log x)(log log x)B−1 ≪ (log x)(log log x)B.

In the last step we used Merten’s theorem for the sum of reciprocals of the primes. This finishes
the proof of (7).

c) The first challenge is to even find out what we are supposed to show. We will show that

Dµ(x; q, a) :=
∑

n≤x n≡a mod q

µ(n) − 1
φ(q)

∑
n≤x

µ(n) ≪ x(log x)−A, (8)

which is similar to (8.3) as ∥µ∥2 =
√∑

n≤x µ(n)2 ≈ x1/2. The function Dµ(x; q, a) measures
how far µ fails to be equidestributed in the residue class a mod q up to x. Trickery with
orthogonality relations quickliy reveals

Dµ(x; q, a) = 1
φ(q)

∑
χ ̸=χ0

χ(a)
∑
n≤x

µ(n)χ(n), (9)

this form was already hinted at in (8.3). And this is really nice, as now we can make use of the
previous parts of the exercise. If we just insert (7) in (9), we directly obtain

Dµ(x; q, a) ≪B,δ q
δx(log x)−B.

This is not strong enough, as the bound in (8) should be uniform in q, and the RHS explodes if
q is large. However, we aren’t far from solving this exercise. Let A > 0 be given. In the range
q < (log x)2A, the previous inequality gives the desired bound (choose δ = 1 and B = 3A). If q
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is larger, there are only a few numbers we sum over. Indeed, if q > (log x)2A, we can trivially
bound from the definition (8):

∑
n≤x n≡a mod q

µ(n) − 1
φ(q)

∑
n≤x

µ(n) ≪ 1 + x

q
+ log log q

q
x ≪ x(log x)−A.

(Remember that φ(q) ≫ q
log log q ≫ q1−ε for every ε > 0). These two cases combine into the

desired bound. GGWP.

Max von Consbruch, email: s6mavonc@uni-bonn.de. Date: February 1, 2023
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